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techniques. There are two traditional approaches. In the one, high resolution images are
formed to be examined and identified by human observers. In the second, target signatures
(feature vectors) are formed for automated machine identification. The first approach is
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Motivated by the observation that the abovc ‘approaches are primarily linear and that
biological systems, which process information in a highly nonlinear, collective, and
frequently iterative manner, are very adept at carrying out recognition, classification,
association , and optimization tasks, we elected to investigate the capabilities of collective
nonlinear processing in target identification.,This report describes our research findings in
this area. Our approach was also influenced by the observation that biological pattern
recognition systems, e.g. in the cortex, did not develop in isolation but in synergism with
sensory organs and their feature forming networks. This means that development of
artificial pattern and target recognition systems may benefit from considering the data
acquisition, representation, identification, and cognition aspects of the problem
simultaneously. This unified approach to the problem of neuromorphic automated target
1.cognition (ATR), has produced, as described in this report the following findings: (a)
The differential range-profile of an isolated target (e.g. acrospace targets) provides an
excellent feature vector for use with adaptive learning networks, (b) Near perfect and
robust classification of test targets is demonstrated in a multilayer error backpropagation
networks using realistic range-profile data generated in our anechoic chamber microwave
scattering measurement facility, (c) Despite this excellent performance, such networks lack
cognitive ability. This means when the network is presented with a feature vector that does
not belong to any one of the targets used in training it, it can classify it as one of the targets
it learned. The network has no inherent ability to tell, on its own (i.e. without the help of
auxilliary gear acting as novelty detector) that the test feature vector belongs to a novel
target. Lack of cognition is a serious limitation of networks meant to operate in complex
uncontrolled environment. (d) Most neural networks for pattern recognition being dealt
with today lack cognitive ability. Preliminary findings of our research motivate us to make
the following hypothesis in this regard: To be cognitive, a neural network must be
nonlinear and dynamical and able to manifest bifurcation. This means it should be able to
carry out computations with more than one type of attractor in its phase-space and to be
able to switch between them depending on whether the sensory input is familiar or novel.
Our future research will be aimed at validating this hypothesis. Demonstrating its
practicality in an engineering sense can have far reaching implications. For example, it
could enable a combat aircraft, not only detect with its radar another at 200 nautical miles,
as is common today, but also to identify it cognitively without having to form an image.
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The views, opinions, and/or findings contained in this
report are those of the author(s) and should not be
construed as an official Department of the Army position,
policy, or decision, unless so designated by other
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1. STATEMENT OF THE PROBLEM STUDIED

Radar targets and other microwave scattering objects can be identified by
either forming images with sufficient resolution to be recognized by the human
observer or by forming representations (signatures or feature vectors) of the target
and using them in automated machine recognition. Tomographic Microwave
diversity imaging techniques that combine angular (aspect), spectral (wavelength),
and polarization degrees of freedom can produce images of the 3-D distribution of
scattering centers of a target with near optical resolution. Despite this capability
there are practical circumstances when the size and/or cost of the physical aperture
needed to furnish the required angular degrees of freedom is too high, or when the
time delay involved in synthesizing such an aperture through relative motion
between the radar system and the object being imaged (as for example,in SAR and
ISAR) is not acceptable. One is faced then with the problem of having to identify the
target from a limited amount of information that is insufficient to produce an
identifiable image.

A number of approaches have been studied and explored in the past to
circumvent this problem [1]-[4]. Generally these have met with limited success.
They include super-resolution by analytic continuation and singularity expansion
methods. The reason for the limited success of these approaches is that they are
primarily linear.

Humans, and other animals, recognize objects in their environment with
great ease. This is essential for their survival. They do this also with robustness, ie.
even when objects are partially obscured or when the data they convey to sensory
organs are corrupted by noise and the signal levels involved vary over very wide
dynamic range. Moreover the recognition task is easily achieved even when the
object is not isolated but exists in the prsence of clutter (background). These
functional capabilities are attributed to the collective nonlinear, nature of signal
processing in the central nervous system. Biological neural nets and their models
furnish accordingly an intriguing paradigm that is worth emulating in artificial
man made systems. Such systems can be of great utility in patern recognition,
solution of optimization problems and inverse scattering problems and in
associative storage and recall of information (associative memory).

The goal of research described in this report is study of the neural approach to
signal processing and assessment of its utility in target recognition and image
understanding. In particular robust target recognition from sketchy (partial and/or
noisy) information is of primary interest. The approach adopted in our
investigation is to study several interrelated facets of the problem. These include:
(a) Microwave data acquisition and image understanding, (b) data representation
which involves formation of signature vectors or feature vectors that can help
achieve robust distortion invariant recognition. By distortion invariance we mean
recognizing the target irrespective of aspect, distance, or location within the field of




view (rotation, size, and shift invariance in the pattern recognition literature). By
robust we mean recognition from sketchy information over a wide dynamic-range
of signal levels and interrogating feature vectors, (c) assess and demonstrate the
capabilities of neural computation in the solution of selected inverse scattering
problems (image reconstruction and object recognition), (d) study of analog
hardware implementation of neural networks and learning machines employing
photonic (optoelectronic, electron-optical, electro-optical) technology.

Extensive efforts in data acquisition and microwave image understanding
and image reconstruction employing diversity information and range-profile
representations (see Appendices I to V) were carried out to evaluate and establish
the viability of range-profiles as signature or feature vectors suitable for use not only
in microwave image reconstruction, but also as will be seen below, in automated
neuromorphic target classification and cognition.

We elected to study neuromorphic radar target recognition of aerospace
targets because such targets are isolated and clutter is minimal. This makes the
problem less difficult than, for example, object recognition by the visual system in
natural scenes where isolating the object from background comprises a complex task
apparently carried out by the eye-brain system routinely through a mechanism of
attention focusing whose exact details are not fully known. We believe, progress
with the aerospace target recognition problem can be helpful in the problem of 3-D
object rcognition in natural scenes. Another reason for our choice of the radar target
recognition of aerospace targets is the ability to generate realistic scattering data and
signatures of scale-models of targe’s of interest in our anechoic chamber microwave
scattering facility. The facility provides semi-automated measurement of the
frequency response of test objects over any frequency (spectral) window in the (2-
26.5)GHz frequency range for any target aspect and any desired state of polarization
of the transmitter and the receiver. (See Appendix IV for detail) The range-profile
representation alluded to earlier is the real-part of the Fourier transfrom of the
measured frequency response of the target after removal of the range-phase. A
target is characterized by either its frequency response (measured frequency response
corrected for range-phase due to propagation between the phase center of the
transmitting/receiving antenna and the scattering phase-center of the target) for ali
aspect angles of interest or by the corresponding range-profiles. In our work we refer
to the range-profiles variably as echo, signature vector or feature vector. When
sufficiently wide spectral windows are used, in data acquisition, the echo or range-
profile echo from the target is an approximation of the impulse response of the
target produced by impulsive plane wave illumination.




2. SUMMARY OF THE MOST IMPORTANT RESULTS

Our initial efforts in assessing the capabilities of neurocomputing in
microwave scatterer identification made use of a fully connected neural network
operating as heteroassociative memory. (See Appendix IV) The connection
weights between neuron in the network were computed off-line and set in the
network. The network consisting of 32x32 binary neurons was implemented in
software. The network was formed from sinogram representations of three test
targets: scale models of a B-52, AWAC, and Space Shuttle. The sinogram
representation is basically a binarized cartesian plot of range-profiles versus aspect
angle for a fixed elevation angle of the target. When tested with partial versions of a
sinogram, the network was able to classify the target to which the data belonged
correctly. Partial data, down to a fraction of nearly 10% of the full sinogram
representation was found able to produce correct classification of the three targets.
This network demonstrated clearly the distinctive features of neural processing i.e.
collective, and nonlinear, signal processing as compared to conventional signal
processing: the functions of data storage, processing and object labeling are
performed by the same elements of the network. This is unlike conventional signal
processing where these functions are normally carried out by separate elements of
the system. This means that, when the network is mplemented in hardware, the
three functions listed above, wold be carried out by the same hardware. The
network required in its operation that the aspect angles at which the test data were
collected be known. Although it is possible to obtain this informatior, it dictates in
practice the use of auxilliary tracking radars and additional signal preprocessing to
determine the target orientation relative to the radar line-of-sight at which the
range profile data comprising the test data was acquired. This complication can be
avoided if one can design a network capable of classifying a target from few echos or
from a single echo or "look" (single range-profile) without having to specify at what
aspect angle of the target the echo occurs. This capability is highly desirable and is
important from a practical viewpoint.

To investigate the feasibility of robust radar target recognition from a single
look we examined next the performance of a multilayered feedforward error back-
propagation network. The network we set up was an outcome of an investigtion we
carried out of a learning network for extrapolation and target identification. This
network (see Appendix VI), consisted of three layers: an input layer of 101 complex
neurons representing the complex frequency response of the target, a hidden layer of
101 real neur~ns, and an output layer of N=2 binary neurons capable of presenting
2N =4 target labels which can classify up to four targets. The connection weights
between the input layer and the hidden layer are those of the discrete Fourier
transform kernel and are fixed. The connection weights between the hidden layer




and the output layer are adaptive and are determined by an error driven supervised
learning algorithm. The network was trained on the (6-17)GHz frequency response
data of three test objects: scale models of a B-52, a Boeing 707 and a space shuttle. We
found this net can learn the frequency responses, or corresponding range-profiles, of
the three test targets constituting the training set. Following training, the net is able
to classify any one of the frequency responses of an object presented to it by
associating it with the correct object label formed by neurons of the output layer.
When a two-out-of-three majority vote was adopted in keeping score of the
network's performance as frequency response echos were presented to it, the score
was found to be perfect even when only 35% of the training set of each target was
employed in training the network. This constitutes good generalization and means
that a network need not be trained with very large numbers of feature vectors before
it can capture *he underlining structure of the target. It is worh noting, that unlike
the preceeding network this network does not require aspect information in its
performance. In addition it was found that the network has excellent robustness. In
that the excellent performance cited above can be maintained even at very low
signal-to-noise ratio and over very wide dynamic range of the frequency response
data. (See Appendix VI for detail) The network achieves, despite its simplicity (it is
essentially a one layer perceptron network), our stated goal namely that of robust
distortion invariant classification of training targets.

At this stage of our research we thought that we had realized the task we set
out to achieve. We were quickly disappointed. Despite of the excellent performance
capabilities cited above, neither this network, nor the network described before, are
of any practical use. Both networks lack cognitive ability. When presented with
novel data from a target the net has not been trained upon, ie. has not seen before,
it could, because of the lack Jf cognition, classify it erroneously as one of the targets
it has learned. This lack of cognition is a serious problem facing practical
applications of neural network that need to operate in complex uncontrolied
environments. This point requires some clarification. One can train a network for
example to recognize handwritten zip code numbers. The trained network is useful
because it is only meant to recognize zip code numbers. No one is going to use it to
recognize the Japanese alphabet for example. It is designed to operate in a controlled
environment. This is not true for a neural net designed to recognize radar targets
because the environment in which the net is intended to operate is not controlled.
Targets other than those the network is trained to recognize can occur in its
environment. There are two possible solutions to this problem that come to mind.
One is to train the network with every target it could conceivably encounter in its
environment. This is not practical, because even if details can be worked out, it
would result in very large networks of unacceptable size. The second solution, and
this is often invoked by workers in the field when they realize that the network they
developed is not cognitive, is to incorporate a "novelty filter." This consists of using
auxilliary gear that can measure other attributes of the target such as size, speed,
altitude, etc. and use these attributes to decide whether the target encountered is of
interest or not, i.e, whether the output of the neural network engaged is to be taken
seriously or not. The disadvantage of this approach is increased complexity and cost




of the data acquisition system. Biological neural networks possess inherent
cognitive abilities. There is no doubt that multisensory modalities; which can be
viewed as providing something akin to novelty filtering, are involved in networks
of the brain to reduce ambiguities. There must be however more to it than that.
We have started recently a study of the issue and are finding the results obtained so
far most intriguing. We believe this study will lead to ways of designing a new
generation of neural networks with inherent cognitive ability. Before discussing
our findings in this regard we will briefly summarize the findings of our
investigation in data acquisition and representation.

The range-profile of a target for a given aspect resembles the impulsive plane
wave illumination of the target for that aspect provided the spectral window used in
data acquisition is sufficiently wide. A general criterion for selecting the spectral

width Af is & = c/2Af where 0 is the desired range resolution on the target and c is the

velocity of light. In general terms, 8 corresponds to the size of the finest detail on
the target (and hence in its image) needed to distinguish it from other targets.
Because the form of the echo (temporal impulse response) produced by an
impulsive plane wave sweeping the target is independent of range to the target (it
only depends on aspect), range-profile data ensures, when used as feature vectorin a
neural based radar target recognition scheme, that performance is independent of
range. Invariance with target location within the field of view is obtained then by
aiming the T/R antenna of the acquiring radar at the target at all times by precise
tracking. Invariance with aspect is achieved then by training a suitable neural
network with the normalized range-profile data collected over the solid angle of
encounter of every target the network is required to learn. Angular sampling
considerations applied to a target of extent L dictate that the number of range-

profiles needed to characterize the target is given by N = Q/06Q where 8Q = (A/L)2

with A being the mean wavelength used in data acquisition and 2 is the solid angle
of encounter. Values of N for typical aerospace targets and practical spectral
windows can therefore be quite large. The generalization ability of trainable neural
networks discussed earlier means that the network need not be trained with every
one of its N range-profile but only with a fraction of them which we call the training
set. This helps reduce training time. The training set can be selected randomly or
uniformly over the solid angle of encounter.

The ultimate goal of our data acquisition and representation effort is to show
that range-profile data collected in a controlled anechoic chamber environment
employing scale models of targets of interest can, by paying careful attention to
scaling issues based on the principle of electromagnetic similitude [5], be used to
recognize the actual size targets by conventional broad-band coherent radar systems
in the field. When the conductivity o of scale models and actual targets is very high
(6 = =), electromagnetic similitude considerations show that scaling is satisfied
when data acquisition with a scale model that is n times smaller than the actual
target is carried out over a frequency range that is n times greater than frequency
range of the actual radar used in the field.



We return now to describing our findings so far regarding introducing
cognition to neural networks. The majority of neural networks described in the
literature, compute by forming point attractors in phase-space with prescribcd basins
of attraction. We have recently described an error-driven algorithm for forming
string attractors in phase-space of networks with synchronously updated neurons
and proposed its use in target recognition, [6] (see also Appendix VII). A string
aitractor is basically a point attractor with filamentary, rather than "volumetric’,
basin of attraction. Synchronicity and its role in feature binding is receiving
increased attention in the literature [7}-{9] but the question of how to achieve feature
binding in practice has thus far received little attention. The learning rule given in
[6] for forming a string attractor, i.e. storing a sequence of vectors in a network,
applies also to forming a periodic attractor by closing the string on itself. The
characteristics of periodic and string attractors, revealed so far in our work are: (a)
High storage capacity MzN where M is the number of vectors stored in the sequence
and N is the number of neurons in the network. For example, M=40 bipolar binary
vectors were stored in a network of N=32 bipolar binury neurons in less than 50
training cycles. (b) Arbitrary (i.e. highly correlated and nonorthogonal) vectors can
be stored in sequence. (c) Initiated from any member of the stored sequence, a string
attractor network cycles through all subsequent vectors and terminates on the last
stored vector in the string, while a periodic attracior network would cycle repeatedly
through all vectors stored which i~ equivalent to producing a periodic spatio-
temporal oscillation of states of the neuron population. (d) Highly isolated periodic
and string attractors are formed with the degree of isolation controlled by the
threshold level of neurons. By this we mean, for relatively high neuron thresholds,
initiators (initiating state vectors) with Hamming distance dyg>1 from any of the
stored vectors do not trigger the periodic attractor but cause the network instead to
bifurcate and converge to a limit point which is usually a ground state or one close
toit. (e) Several nonintersecting periodic or string attractors may be stored in the
same network. (f) The learning rule in [6] for storing sequences scales well with
network size, for instance, networks with 32, £4 and 128 neurons were tested and all
showed similar behavior. (g) Sequence of arbitrary unipolar binary vectors can
also be stored provided the vectors are not too sparse.

Periodic attractor networks with the above-listed properties, and particularly
(d), offer a possible mechanism for cognition in that when the vectors stored are
feature vectors representing an object in its different manifestations, and the
initiating vector is one of the stored feature vectors, or is close to any one of them in
the Hamming sense (e.g dy<l), the periodic attractor will be triggered. Now if a
label vector, identifying the object, was imbedded earlier on in the periodic attractor
when it was formed, it would also be triggered once every period signaling thereby
that the input is one of the feature vectors stored. Because of the high degree of
isolation of a periodic attractor achieved by proper choice of neuron threshold an
initiating input vector with Hamming distance dp>1 would not trigger the

sequence or the imbedded label. Instead, the network bifurcates and switches its




operation to computing with point attractors whereby it proceeds to converge
rapidly to a fixed ground state, where all neurons are in their low binary state, or
one close to it and this would serve as an indication within the network that the
input is not familiar providing thus cognition.

Feature vectors of more than one object can be stored in separate non-
intersecting periodic attractors containing imbedded labels in the same network.
Attractors and labels are triggered in such a network only if the initiator is of
Hamming distance dp<l from one of the vectors stored in an attractor. Novel

initiators will not trigger any of the labels and this provides such a network with
ability to finely distinguish if certain feature vectors are present in its environment.

Despite its potential usefulness for feature binding, periodic attractor
networks are void of generalization because of their high isolation. A slight change
in a feature vector that triggers the attractor renders it ineffective causing the
network to bifurcate. This means that a recognized object can stop being recognized
if its feature vectors change to the slightest. This suggests that periodic attractor
networks need to be used with additional networks that can furnish the
generalization capabilities needed in order to provide the composite network with
cognition and robustness at the same time. Presently, we are seeking methods for
imparting prescribed domains of attraction for each vector stored in the periodic
attractor. This would provide the periodic attractor with controlled basin of
attraction. Initial results suggest that this can be achieved by combining periodic
attractor networks with arrays of feedforward feature extracting networks.
Advantages of this hierarchial approach to network construction we are noting at
this very preliminary stage, are modularity and potential reduction of learning time
even in large networks because of segmentation. All this appears to be achieved
while enjoying the good robustness and noise immunity of feedforward learning
networks. Although such feedforward networks provide robustness and noise
immunity, they lack cognition. Cognition is provided by the periodic attractor. This
approach could provide us, for the first time, with a way for combining distinct
neural network or neural modules in such a way as to achieve higher level
processing such as cognition.

Finally we report on our findings in the area of photonic or optoelectronic
implementation of neural networks. Interest in artificial neural networks
implemented in analog hardware rather than digital software stems primarily from
their potential speed advantage. The photonic approach is motivated by the desire
to combine the best attributes of optics, namely parallelism and massive
interconnectivity, with the best attributes of electronics, decision making
(nonlinearity) and gain. During the period of this report we designed constructed
and studied the performance of what we believe to b. the first stochastic photonic
learning machine (see Appendix VIII for detail). Learning in this machine is
stochastic taking place in a self-organizing tri-layered opto-electronic neural net with
plastic connectivity weights that are formed in a programmable nonvolatile spatial
light modulator. The net, which can also be called a Boltzmann Learning Machine,




learns by adapting its connectivity weights in accordance to environmental inputs.
Learning is driven by error signals derived from state-vector correlation matrices
accumulated at the end of fast annealing bursts that are induced by controlled optical
injection of noise into the network. Operation of the machine is made possible by
two important developments in our work: Fast annealing by optically induced
noisy thresholding, and stochastic learning with binary weights. Results obtained
with a 24 neuron prototype partitioned into three layers with 8 input, 8 hidden, and
8 output neurons show that the machine can learn, with a score of about 95%, to
associate two 8-bit vector pairs in 10-60 minutes with relatively slow (60 msec
response time) neurons. Shifting to neurons with 1 psec response time for example,
could reduce the learning time by roughly 104 times. Slow neurons were
deliberately used to make it easier to visually examine and record the changing state
vector of the network as it operates which is displayed with an array of LEDs.
Increasing the number of hidden neurons in this machine from 8 to 16 is shown, by
numerical simulations, to increase the learning score to 100%. The spatial light
modulator (SLM) used in constructing the machine had to be of the nonvolatile
variety. The one such SLM available to us at the time, (and still is) was the
magneto-optic SLM. A scheme for enhancing the frame rate of this SLM from
video rate to 1000 frames/sec to speed-up learning was developed [10]
Unfortunately, the pixels of this device have binary (on-off) transmission only. This
restricted the connection weights of the neurons in the machine to binary values.
All adaptive learning algorithms require analog weights. To overcome this
limitation we developed a scheme for Boltzmann machine learning with binary
weights (see Appendix VIII). Although effective in learning, the number of
associations the network could learn with the binary weights scheme is less than
what it can learn with analog weights. This underlines the importance of
developing programmable nonvolatile spatial light modulators for use in photonic
learning machines.
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Image Interpretation and Prediction in Microwave
Diversity Imaging

HSUEH-JYH L1, NABIL H. FARHAT, axp YUHSYEN SHEN

Abstract—The microwave image of a metallic object is interpreted
from a nes point of view, based on the understanding of the intercon-
ngction hetween the scattering mechanisms, the data acquisition sys-
tem, and the image reconstruction aigorithm. From this understanding
we ure able to interpret and predict microwave images reconstructed
from data collected over specified,and angular windows. The connec-
tion between a special scattering mechanism, edge diffraction. and its
reconstructed image is established. The microwave image of an edge
will be two bright points whose focations correspond to the end points
of the edge if the normal aspect angle is not included in the angular
windows; otherwise a line joining the two end points and reprosenting
the ¢dyge witt appear in the image. Experimental images of a trihedral
reflector reconstructed from data collected over different angular win-
dows support this new approach to image interpretation and predic-
tion.

[. INTRODUCTION

Microwave diversity imaging is an imaging technique that ex-
ploirs posaible degrees of freedom. including spectral. angular. and
polunization diversities {1}, In this 1maging system. an object 1s
seated on a rotating pedestal and 1s illuminated by a planc wave.
For cach aspect angle a set of pulses at different frequencies is
transmitted and its echoes are received. The object is then rotated
and the mecasurement is repeated to obtain the multiaspect stepped
frequency response of the scattering object.

Ia the microwave regimes. the physical optics (PO approw-
mation s usually used to model the scattered ficld of U conducting
object It was shown that a three-dimensional (3-Dy Founcr trans-
form (F T relationship exists between the shape of a pericciiy con-
ducting object and its backscattered far field under the PO approx-
imanoa [2]. However, the PO approximation is inadequate for
scattering problems of a complex shaped conducting object. At
high-frequeney edge diffractions. multiple reflections. creeping
waves, and surface traveling waves are also important scatienng
mecnanems |3 A neid scaticred from these scattering miccha-
niss cannet he treated by the PO approximation. Additionalfy,
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the spectral and angular windows for the data are usually restricted
by practical constraints. Therefore, the microwave image of a me-
tallic object might be different from its geometrical shape.

In this paper we will investigate microwave images of metallic
objects employing mucrowave diversity imaging from a new point
of view, bused on the understanding of the interconnection between
the object scattering mechanisms, the data acquisition system, and
the image reconstruction algorithm utilized in image retricval. The
image rcconstruction algorithm can be either the Fourier transform
method or the back-projection method, and these two methods yield
equivalent resuits [1]. {4]. However, the back-projection method
provides more physical insight into the image formation process
[5]. Basically. the image is formed in three steps: |) measure the
scattered field over a spectticd spectral window and angular win-
dow; 2) obtain the range prohle, which is the inverse FT of the
range-corrected frequency response, at each aspect angle; and 3)
back-project the range profile of each aspect angle onto an image
plane to obtain the image. We will interpret and predict the micro-
wave image based on the above three steps.

A different scattering mechanism might produce a different ap-
pearance 1n its microw.asc mmage. In this paper we will only deal
with a speciad scattenng mechanisme-edge diffraction For those
objccts consisting ot conducting plates. edge diffractions are dom-
inant contributors to the scattered field when the receiver is not in
the specular direction of any one of the visible plates comprising
the object. To a first order approximation the field scattered from
the above type objects can be considered as a summation of the
contnibutions from each ""visible™ plate, and the scattered field of
a plate can be considered us a summation of the diffracted field
from cach “"visble™ edge. Therefore. diffraction from an edge s
the basic building block for the scatiening problem of those objects
consisting of conducting plates.

In Section II the scattered field from an edge with finite length
will be reviewed, the physical properties of its range profile will
be explained. and the image formation for an edge with finite length
will be discussed. A trihedral reflector is an object consisting of
conducting plates. Experimental images of a trihedral reflector re-
constructed from data collected over different angular windows will
be demonstrated and interpreted in Section 111

II. ScatTerRep FIeLD. RANGE PROFILE. AND IMAGE
ForMaTiON OF A FINITE EDGE

Consider a conducting plate placed on a rotating pedestal as il-
fustrated in Fig. . Points P, and P. are two vertices of the plate
and the line PP, forms an cdge of the plate. In the laboratony
coordinate system, define the z-axas in the direction of the rota-
tional axis. und the t-axis in the direction of the line of sight. At
the starting angle the polar coordinates of the end points P, and P,
are (r,. 8,.0,)und (ry, 6:. 1), respectively. As the plate 15 rtated
with an angle o the coordinates of P, and P, become (r,. 8,. ¢, +
©) and (r.. 6,, ®- + o). respectively. The differential ranges of
these two end points at rotation angle @ are then r, sin 8. cos (o,
+ o)and r- winfls cos (©y ~ ). respectively. Tt 1s noted that the
dependence of the differential ranges of the end points on the ro-
Waieons attpde s sinusoidal

Next we detine an edge-hxed coordinate for the plate. Let the
2'-axis be in the direction of the edge PP, and the x -axis be nor-
mal to the edge and lyving on the plate surface. The corresponding
inclination angle of the transmitter/receiver to the edge-fixed co-
ordinate system s 8 (o = 0°). As the plate s rotated through an
angle o. the corresponding inclination angle tor the edge-tined vo-
ordinate systenr becomes 77 o) 1t s noted that @ v not only
tuncthion of ¢ bul also g tunction of the anentation ot the plate and
the edge

The dittracted field of a wedge with fimite length for arbitrary
incident and dittracted angles has been treated [6]. where the con-
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of the edge

V'
antenna

Fig. 1. Geometry and coordinates of an edge in the laboratory coordinate
system and edge-fixed coordinate system.

cept o equivalent electrical current and equivalent magnetic cur-
rent has been applied. Denote the equivalent electric current and
equivalent magnetic current on the edge as /(z") and M(2'). The
expressions of / and M for the backscattering case can be found in
[6]. They are functions of the inclination angle and the azimuth
angle, and are inversely proportional to the wavenumber .

The backscattercd field of an edge with finite length L expressed
in the edge-fixed coordinate system can be written by [6]

Jwug e sin (kL cos 6")

= IEROC  in g —_r
E, ar > sin 8'1(0) L L cos B (1)
_jwi)ﬂ . sin (kL cos 6') "
o yaia 1;sm()M(O)L——-~—-——-kLCos T {2)

where /{(}) and M(0) are the equivalent electnic current and equiv-
alent magnetic current at 2 = 0, and 7 ts the characteristic imped-
ance of the free space.

At a specific aspect the range profile is obtained by FT the range-
corrected frequency response. After range correction (i.e., the hirst
two terms on the nght of (1) and (2) being removed), the range-
corre.ted ficld can be further simplified to

JjhLcosb  _ e ~hLeng
Ey = 10)L 3
P = n810) 2kL cos ' ’
e/ll.\n\d - e'/AI\U\O'
E, = ‘M(0)L . 3
o = nsin6'M(0) 2jkL cos 8 4

The FT of (3; and (4) with respect to 2k over a finite bandwidth
will give two peaks. located at range about + (L /2) cos 8°, which
are at the differential ranges of the end points of the edge. with
amplitude proportionai to /(0)or M(Q). and 1 /(L cos 8" )" =
90° At the rotation angle ¢ such that 8°(0) = 90°. the ranpe
profile gives a single peak with strong magnmitude because the two
end points of the cdge have the same differential ranges and u:! the
points on 1 cdges are in equidistance to the observation point
After rcalizing the aspect dependence of the range profile of the
edge. we can then form and predict the image of an edge by the
technique of back-projection [4]. (5]. [7]. After back-projection,
the contributions of a speaific range profile (o the reconstructed
image will be two parallel hines oriented in the direction ot o Be-
cause the trace of cach end point versus the rotgtion ang'c '~ - e
soidal, ol back-projection hines for vanous rotation angles < s

AMPLITUDE

DIFFERENTIAL RANGE
(a)

(h)
% / Z
% // /
(<) (d)

Fig. 2. Image formation of an edge. (a) Skelch of the range profiles of an
edge at various aspect angles. (b) Implementation of the back-projection.
Sketches of the images after back-projection (c) including and (d) with-
out the aspect angle such that the edge is normal to the line of sight.

pass through the corresponding ¢nd point as in the case of com-
puter-aided tomography (CAT). intensifying the brightness of the
end points. However, when the aspect such that 8' (o) = 90° 1s
within the angular window (i.c.. the aspect at which the incident
wave is normal to the edge is contained within the angular win-
dow), the back-projection duc to this range profile will be a single
bright line.

The above explanation is illustrated in Fig. 2. At rotation angle
&g the edge 1s normal to the line of sight (i.e., 8'(®,) = 90°). and
the range profile for that aspect has a single peak with large am-
plitude. When plate s rotated to another angle ¢,, the range
profile has two peaks located at 4/ and d" with smaller amplitudes
(see Fig. 2(a)). The implementation of back-projection is 1llus-
trated in Fig. 2(b). The sketches of the image after back-projection
including and excluding the specular aspect are shown in Fig. 2(c)
and (d). respectively. The above discussions and diustrations n-
dicate that the microwase image ot an edge will be two bright points
whose locations correspond to the end points of the edge it the
normal aspect angle s notncluded in the angular window | other-
wise a line joiming the two pomnts and representing the edge will
appear in the image.

(. MicrOwAvE IMAGES Ot A TRIHEDRAL REFLECTOK

To venty the new interpretation approach, the microwave 1im-
ages ot a trhedral reflector reconstructed from data coliected over
vanous angular waindows are demonstrated befow

The geometny o g tnhedrat reledton and the imaging arrange:
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Fig 1. Geometry. imaging arrangement. [ringe pattern, and sinogram of
a tnhedral reflector (a) Geometry and imaging arrangement of a tn-
hedral reflector (b Real pant of the range-corrected frequency response
of the trihedral (¢) Sinogram of the trihedral reflector

ment are shown n Fig. 3ca). The transmitting and receiving anten-
nas have opposite senses of circular polanization. 101 equal fre-
quency steps covering the 6-16.5 GHz range were used to obtain
the trequency response of the trnihedral reflector. The obyect 1y ro-
tated clockwise 3607 The real pant of the range-corrected complex

I. JANUARY 1989

Fig. 4. Photo image and microwave images of a tnhedral reflector. (a)
Microwave projective image reconstructed from data collected over an-
gular window from ¢ = 0° to 220°. (b) Projective photo image. Micro-
wave projective images reconstructed from data collected over (¢} an-
gular window 1 (¢ = 0° to 40°); (d) angular window 2 (@ = 40° to
80°); (e) angular window 3 (¢ = 80° to 120°). (f) angular window 4
(& = 120° to 160°); (g) angular window 5 (o = 160° 10 226°). and
th) angular window 6 (& = 2207 10 360°)

frequency response of the trihedral reflector is shown as a central
slice of Fourier data in Fig. 3(b). The radial distance of a given
sample in this plot represents the frequency while the polar angle
represents the rotauon angle o The brightness of each point 15
proportional to the amplitude of the frequency response. The range
profiles for all aspect angles are represented as a sinogram. The
sinogram representation has been used 1n CAT [7} and 1s applicd
here 1o represent the range profiles of various aspect angles. Itisa
2-D intensity varied display with the abscissa of the differential
range. the ordinate of the aspect angle. and the intensity or bright-
ness proportional to the amplitude of the range profile. The sino-
gram of the tnhedral reflector s shown i Fig. 3tc). The botom
line represents the range profile of the first aspect (@ = 0°) while
the top line represents the range profile of the last aspect angle.
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The magnitude of the range profile is proportional to the brightness
of the display and the sinogram 1s displaved in linear scale. The
dvnamic display range has been suitably chosen so that weak sig-
nals will not be overndden. Examining the sinogram one can find
that bnght points are present in certain aspect angles. Locations of
these bright points correspond to the differential ranges of the "*vis-
ible’” edges that are normal to the line of sight.

The image reconstructed through an angular window covenng
from @ = 0° 1o 220° is shown 1n Fig. 4(a). It is seen that the image
15 a projective image projected onto the plane normal to the rota-
tional axis. The optical projective image is aiso shown in Fig. 4(b)
for companson. To venfy our new image interpretation approach
stated in the previous section. we divide the whole angular window
into six subwindows and reconstruct the image trom each subwin-
dow. The resultant images are shown in Fig. 4(c)-(h). Examining
the resultant images. one can find that only those edges that are
normal to the line of sight within the specified angular window
appear in the image. The brightness of the end points of the edges
has been intensitied. It is noted that no edges are normal to the line
of sight in angular window 3. Accordingly, no edges are present
in the 1mage while the bnghtness of the vertices are intensified.
Furthermore, the effect of multiple retlections is pronounced for
some aspects in this window as can be seen trom the fringe pattem
(Fig. 3tb) and the sinogram (Fig. 3(c)). Multiple retlection usually
distorts the image because the range profile does not retlect the
range informauion of the obiect shape {5]. [8]. In angular window
6 strong multiple reflections are dominant contnbutors to the scat-
tered field for most aspects. Although the edges can still be seen
n the 1mage. artitacts due to multiple retlections distont the image.

[V. Discussion aND CONCLUSION

[n this paper we interpret the microwave image of a metallic
object from a new approach. based on the understanding of the

H196-2892 890 100-0101S01 00
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interconnection between the scattering mechanisms. the data ac-
quisition system. and the image reconstructton algonthm. From
this understanding we can interpret and predict the microwave im-
age reconstructed from data collected over specified spectral and
angular windows. Experimental results support this new approach
1o image interpretation. Although the scattering mechamism treated
in this paper is confined to the edge diffracuon. the same approach
can also be applied to establish the connection between the other
scattering mechanisms and their reconstructed images [5]. Suc-
cessful interpretation and prediction of the microwave image are
fundamental to research in several areas. including target identifi-
cation, classification. radar cross-section reduction. and image dis-
tortion {8].
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Range Profiles and Images of a Loaded Straight
Wire

HSUEH-JYH LI, memser, 1eee, NABIL H. FARHAT, fFeLLow, 1EEE, AND YUHSYEN SHEN, MEMBER, IEEE

Abstract—The range profiles and images of a straight wire without and
with lumped impedance loading are discussed and demonsirated. The
scattering mechanisms of a straight wire are qualitatively analysed. Plots
of range profiles at different aspect angles show thal surface truveling
waves are important scattering mechanisms of a straight wire. The
presence of traveling waves makes ringlike artifacts appear in the
reconstructed images. It is found that lumped impedance loading can
effectively distort the range profiles and microwave images of a wire
scatterer, In addition, randomly varied reactive loading can generate
random peaks in the range profiles.

1. INTRODUCTION

HE PROPERTIES of the field scattered from a scatterer

loaded with lumped impedance have been extensively
studied [1]-{3]. Several interesting phenomena can then be
deduced from the variation of the scattered fields. Fixed lincar
impedance loading can change the natural frequencies of a
target (4]. Time-varying loading can make the receiver unable
to phase lock to the frequency of the incident wave and can
shift the apparent frequency of the scattered field to provide a
false Doppler shift [3]. It can also spread the spectrum of the
scattered field to decrease the energy within the bandwidth of a
receiver [5]. The sensitivity of these phenomena to impedance
loading has been discussed in [S}].

In this paper, we will discuss two other properties. range
profiles and images of a straight wire without and with lumped
impedance loading. The range profile of a scatterer at an
aspect is defined as the Fourier transform (FT) of the
frequency response of the scattered field at that aspect. Range
profiles can give useful insight into the scattering mechanisms
of a scatterer. After the range profiles are obtained, un image
can then be formed by back projecting the compicy runge
profiles at various aspects into the imaging plane [6].
Microwave images of conducting objects have been inter-
preted satisfactorily through the understanding of the scatter-
ing mechanisms of the object and the procedures of the image
reconstruction algorithm [7]. Different scattering mechanisms
can produce different aprearances of microwave imeges I
was reported that a surtace traveling wave 1s the donunant
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scattering mechanism for the backscattered field of a long thin
wire with near end-on incidence {8]. Therefore, it will be of
interest to cxamine the appearance of the image for objects
with this special scattering mechanism.

In some applications it is desirable to distort the image of a
target so that it cannot be recognized by radar [9]. If the wirc is
loaded with impedance, the in.pedance discontinuities on the
wire surface will cause extra radiation. The effect of impe-
dance loading on microwave images has not yet been reported.
Monochromatic imaging of a monopole antenna has been
studied holographically by lizuka and Gregoria [10], who was
interested in visualizing resonance effects. However, what we
are interested in is a wire scatterer rather than an antenna and a
frequency diversity image instead of a monochromatic image.

In this paper we will use the moment method to numerically
calculate the field scattered from a loaded straight wire
scatterer and derive iy range profile and microwave image
from the calculated scattered ficlds. A qualitative analvsis of
the scattering mechanisms of a straight wire will be given first.
This analysis is then examined via plots of the numerical and
experimental range profiles. which are then compared with the
experimental results. The eftect of impedance on the range
profiles and the reconstructed images will be presented and
discussed.

II. SCATTERING MECHANISMS OF A STRAIGHT WIRE

Radiation can originate tfrom severa! places on an arbitrarily
shaped wire object. These include the excitation region. an
impedance load, a change in radius, a sharp bend. a smooth
curve, and an open ond [2]. Consider a straight wire
Hluminated by an impulsive plane wave with angle of
incidence 6 as shown in Fig. 1. In this scattering arrangement
the only places which cause radiation are the end points of the
wire. The pulse traveling in free space impinges on the upper
end point first. Part of the incident energy is then reradiated,
and the remaining encrgy continues to travel along the wire.
This traveling pulse “vill be partly reradiated when 1t reaches
the lower end and partly retlected upward along the wire. This
process of radiation and reflection continues until the pulse
dies out. The original pulse propagating in free space hits the
lower end point some time after it impinges on the upper end
pownt. The process of radiation, reflection, and guided
propagation along the wire will then occur just as in the case of
the upper end point. Ditferent wave motions resulung trom
muluple 1nteractions botween the ends of the wire are
indicated in Fig_ 1. The differential path length /,, which 1s the
ith wave motion path relative to the path length when the
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impulsive illumination hits the center point of the wire, is as
follows:

/= -hcosO—-hcos©O=-2hcos 6
[/ =hcos ©O~hcosO=2hcos O

L=-hcosO~+2h+hcos©O=2h

1{=hcos B+2h-hcos©=2h
Lh=-hcos©+4h—-hcos©=4h—-2hcos O
[, =hcos©+dh+hcos©=4h+2hcos O

li=—hcosO~6h+hcos O=6h

l;=hcos©+6h—hcos O=6h.

III. RanGE PROFILES AND RECONSTRUCTED IMAGES

To examine the previous analysis, we use the moment
method to theoretically calculate the field scattered from a
straight wire scatterer irom which we derive the range profiles
and reconstruct the image. The piecewise sinusoidal Galerkin
method is used [11]. Let the ratio of the length 10 the radius be
100. the length of wire be 30 cm. and the frequency coverage
be from 6 to 16 GHz. in other words, the length in terms of
wavelength ranges from 6 to 16. The polarization of the
incident field 1s assumed to be #-polarized. Shown in Fig. 2 are
the magnitudes of the range profiles for angles of incidence

incident
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Numerical range profiles of straight wire for angles of incidence equal to (a) 30°. (b) 45°. (c) 60°. (d1 75°.

equal to 30°, 45°, 60°, and 75°. The location of the peak
marked with i corresponds to the differential path length of the
ith wave motion shown in Fig. 1. If we carefully examine the
range profiles shown in Fig. 2, we can find that the peaks
marked with | and 1~ depart more from the center as the angle
£ decreases. while the peaks marked with 2 and 2 and 4 and
4’ remain at the same position and thus are independent of the
angle of incidence. Those peaks marked with 3 move toward
2. while those marked with 3° move toward 4~ as § increases.
These observations verify the analysis stated in Section II

A real thin rod with length 127 and diameter 1/8" is used as
a test object to experimentally verify the numerical results.
The measurement arrangement is shown in Fig. 3. The wire
scatterer is mounted on a rotating pedestal controlled by a
microcomputer. A set of step frequencies are transmitted, and
the scattered field is received. After that, the object is rotated
and the measurement is repeated. The frequency coverage is
from 6 to 16.5 GHz. The polarization status of the transmitting
and receiving antennas are righthand circularly polarized and
lefthand circularly polarized. respectively. A bistatic angle of
16° exists between these two antennas. The range profiles of
this thin rod at several aspects are shown in Fig. 4. In this
bistatic case the differential path lengths of path 2 and path 2’
are not equal. This fact accounts for the discrepancy between
the experimental and numerical range profiles.

From the previous analysis and the range profiles shown in
Figs. 3 and 4. one can sec that the phenomenon of surface
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traveling waves is quite evident in the straight wire case. (f the
rotation center is chosen at the center point. the effect of
constant ranges (2h, 6hA, etc.) on the reconstructed image will
be nings with constant radius [7]. Shown in Figs. S(a) and 5(b)
are the numerical and experimental images reconstructed from
the data collected over an angular window in 8 from 20° to
80°. respectively. It is seen that ringlike artifacts appear in the
images and the end points are intensified. This example shows
that the presence of traveling waves usually degrades the
image.

IV. EFfecT oF IMPEDANCE LOADING

The geometry of a loaded straight wire is shown in Fig. 6. If
three lumped resistors. each with resistance 50 Q. are added at
2= 0.5h, 2 = 0, 5y = —0.5h, these loading points will
cause extra reflections. Both the incident wave impinging on
the loading points and the waves traveling along the wire
arriving at the loading point will cause additional reflections.
This fact resuits in additional peaks in the range profiles.

PEDESTAL
CONTROL

Block diagram of microwave diversity scattering measurement system.
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thy

Fig. 5. (a) Numerical im..2 reconstructed from data collected over angular
window from ¢ = 20° to 80°. (b} Experimental image reconstructed from
the data collected over an angular window from § = 20° 0 80°

Shown in Fig. 7 are the range profiles of the three-loading-
point wire at several angles of incidence. Examining these
plots, one finds that more lobes appear and the lobe produced
by the loading point is not as narrow as those produced by the
end points. Furthermore. the number of lobes between | and
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17 1s not necessarily equal to the number of loading points (for
examplc, see Fig. 7(b) with § = 45°). These additional lobes
are due to reflections of the traveling waves.

To examine the loading effect experimentally, we divide the
thin rod into three sections with a 1-mm gap between them.
These gaps are expected to produce a loading effect. However,
it is difficult to assign a loading value 1n each gap. Inaddition.
the equivalent loading impedance 1s also a function of
frequency because the gap distance in terms of wavelength is
changed with frequency. The experimental range profiles for
seversl angles of incidence are shown in Fig. 8. Extra peaks
appear in the range profiles due to the discontinuities of the
gaps. However, the magnitudes of these peaks differ from the
counterparts of Fig. 7.

The numerical and experimental images reconstructed from
the data collected over an angular window from 8 = 20° w0

Geometry of Joaded straight wire.
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Numerical range profiles of straight wire with three loading points at angles of incidence equal to (a) 30°. (b) 45°. () 60°.

“¢e

80° are shown in Figs. 9(a) and 9(b), respectively. It is seen
that the loading impedance and the surface traveling waves
have distorted the images. By comparing the images of Figs. 9
and 5, one can conclude that the images have been successfully
distorted by impedance loading. However, the price paid is an
increase in the radar cross section (RCS) {5).

Finalis . we examine the effect of time-varying loading on
the range profiles. Range profiles usually give the maximum
and minimum range information of an object along the
direction of propagation, which in turn provide the informa-
tion of the target dimension. In some applications, it is desired
to distort the range profile so that the radar cannot deduce the
object dimension from the range profile. One may use an
active broad-band slave jammer to distort the range intorma-
tion, but this is not what we wish to discuss. We try to usc a
passive impedance load to achicve this goal. Impedance
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Experimental range protiles ut three-segment thin rod at angles of incidence equal to (a) 30°.
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(a) Numerical image of straight wire with three loading points

reconstructed trom data collected over angular window from 6§ = 20° to
80°. (b) Experimental images of three-segment thin rod reconstructed from
data collected over angular window from § = 20° to 80°.

loading can change the magnitude and phase of the scattered
fields. If the loaded values are randomly varied for each time
instant, the randomness might cause random peaks in the
range profile.

It has been concluded that reactive loading can make a more
drastic change in the scattered fields (either in phase or
amplitude) than resistive loading can. and increasing the
number of loading points can produce greater field variation
[5]. It is also known that the reflection coefficient at a given
point is a function of the characteristic impedance and the
loading impedance at that point. If the loading impedance at a
point is randomly switched between capacitive loading and
inductive loading, the phase of the reflection coefficient at that
point will be changed at each time instant. Consequently, the
peak of the range profile at that point may be reduced, and the
phase variation of the backscattered field between two adjacent
frequencies may be more abrupt. This will increase the
effectiveness of the random loading in distorting the range
profile.

In the following we compare the effect of a fixed loading. a
randomly varied resistive loading. and a randomly varied

reactive loading on the range profiles of a loaded straight wire.
The parameters used are number of loading points 7 equal to §
and 6 = 45°. Each loading impedance is either fixed to 50 Q,
or randomly resistively varied from O to 100 Q, or randomly
reactively varied from —j50to +50 Q. The range profiles of
the three loading cases are shown in Figs. 10(a), 10(b), and
10(c). respectively. From the figure one can find that the
difference in the range profiles with fixed resistive loading and
that with randomly varied resistive loading is small, and
randomly varied resistive loading does not create random

peaks.
V. CONCLUSION

The scattering mechanism of a straight wire has been
qualitatively analyzed. Plots of range profiles at different
aspect angles show that surface traveling waves are important
scattering mechanisms of a straight wire. The presence of
traveling waves makes ringlike artifacts appear in the image of
a straight wire. It is also found that lumped impedance loading
can eifcctively distort the range profiles and the reconstructed
imares. Furthermore. randomly varied reactive loading can
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A New Iterative Algorithm for Extrapolation of
Data Available in Multiple Restricted Regions
with Application to Radar Imaging

HSUEH-JYH LI, NABIL H. FARHAT, reLLow, ieee, anp YUHSYEN SHEN

Abstract—A new iterative method for extrapolation of incomplele
segmented data available in multiple separated bands is proposed and
tested. The method uses the Burg algorithm to find the finear prediction
paramefers and an iterative procedure (o improve the estimation of the
linear prediction parameters and the extrapolation of the data. This
method is especially effective when the spectra (Fourier transform of the
observed data) are in discrete forms. ln the context of radar imaging
represented here, this means the objects consist of distinctly spaced
scattering centers. The advantages of this algorithm are demonstrated
using both numerically generated and realistic experimental data pertain-
ing to high resolution radar imaging.

[. INnTRODUCTION

T IS WELL KNOWN that the resolution of microwave

diversity imaging systems [1] depends on the spectral and
angular (aspect related) windows. To obtain the range infor-
mation of the target, one can use 2 pulsed signal analyzed in
the time domain and map the range profile of the target as
function of aspect angle or use a broad-band continuous wave
(CW) signal analyzed in the frequency domain to yield its
frequency response. The range resolution is inversely propor-
tional to the bandwidth coverage of the measurement system.
In practical situations, however, due to limitation of the
measurement system or restriction of bandwidth allocation,
the observed data can lie in multiple restricted spectral regions
which we call passbands. Several methods of extrapolating the
measured data beyond the observed regions have been
proposed and tested [2]-[4] in an attempt to achieve the full
resolution of the unrestricted spectral range, when a prior
knowledge of the maximum dimension of the object exists
and an iterative procedure is applied. The use of linear
prediction for the interpolation and extrapolation of missing
data and data gaps has also been reported [5].

To increase the resolution obtained from spectral data of
such limited extent, techniques of nonlincar power spectrum
estimation have been used with notable success {6]. These
include autoregression (AR), lincar prediction (LP), and
maximum cntropy method (MEM) and multiple signal classifi-
cation (MUSIC) algorithm [7]. For a stationary Gaussian
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process, the first three methods above can be shown to be
equivalent {6].

Most of the nonlinear spectrum estimation techniques are
developed to process the data in the time and frequency
domains. However, there is an analogy between the time-
frequency domain and space-spatial-frequency domain. In
microwave diversity imaging, for a given aspect angle, the
frequency response of the scattered fields corresponds to a set
of time-series data, while the square of the absolute value of
the range profile, which is defined as the Fourier transform of
the frequency resporse, corresponds to the power spectrum.

It is known that the linear prediction method is especially
suited for those cases when the spectra are in discrete form.
Under high-frequency conditions, the scattcred field from a
complex shaped target can be attributed to a few discrete
scattering centers that include edges. It will be shown that
under the high frequency approximation the locations of the
scattering centers and their scattering strengths are indepen-
dent of the operating frequency for a given transmitter/
receiver pair. This is equivalent to saying that the spectra (or
range profiles) of the scatterer are also of discrete form. These
phenomena provide the motivation to apply the linear predic-
tion method to microwave diversity imaging.

Although the spectra estimated by MEM or AR can be very
sharp and well resolved, this may not be an advantage in a
microwave imaging system. If the data are not sampled
densely enough in the spectral domain, the sharp, well-
resolved components may be missed, and the results may not
faithfully reflect the actual spectral amplitudes. Besides, image
reconstruction from microwave diversity imaging systems
involves coherent superposition of the data in the spectra, or
range profiles, of the scatterer (obtained at different aspect
angles), where these are estimated from partial data availabie
in segmented bands {1]. If the estimated amplitudes of the
range profiles obtained by MEM or AR depart from the
desired values because of undersampling, image degradation
will result. Furthermore, we are interested not only in the
magnitude of the range profile, but also in the phase of the
range profiles as required for the coherent superposition.
Therefore, to overcome the dense sampling requirement and
retain the phase information of the range profiles. it may be
preferable to extrapolate the data available in the varnous
passbands into the vacant bands before the spectra or range
profile are formed. and image reconstruction is then under-
taken.

«! 1987 IEEE
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To extrapolate the data beyond the observed region, an
.intuitive way is to predict the exterior data by using the same
parameters obtained by the linear prediction model. One of the
most popular approaches to linear prediction parameters
estimation with N data samples is the Burg algorithm [6], [8].
For a given number of data samples in a given observation
interval, in order to separate the discrete spectra (in this paper,
spectrum is defined as the Fourier transform of the observed
data), the required model order in the linear prediction method
increases as the separation of spectra decreases, i.e., it is easier
to model the data sequence for spectra with larger separation,
which translates into well separated scattering centers, than
those with closer separation. In addition, for a given model
order and given number of sampling points, it is easier to
distinguish the two close spectra components (scattering
centers) by a data set with longer observation interval than that
by a data set with shorter observation interval. It was also
suggested that the model order should not exceed half of the
number of data points for short data segment because
otherwise the linear prediction spectral estimate will exhibit
spurious peaks [6}. From the above observations, one can
conclude that it would be more difficult to resolve two closer
point targets (Fourier transform of the observed data in
frequency domain) with short data band. If all the observed
data within multiple restricted regions can be fully utilized,
better resolution can be expected.

In this paper, a new iterative method which uses the Burg
algorithm to find the lincar prediction parameters and an
iterative procedure to modify the prediction parameters is
proposed and teste.! with both simulated and realistic mea-
sured data generated in our anechoic chamber experimental
microwave imaging and measurement facilities. With this
algorithm, one can obtain acceptable extrapolation beyond the
cherved region if the spectra are in discrete forms and the

_-aration of the spectra are not too small. Both simulations
and experimental results are presented to demonstrate as an
example the effectiveness of the method in microwave
diversity radar imaging.

II. THe NEw ITERATIVE ALGORITHM

An approach to linear prediction parameter estimation with
N data samples {x), -+, Xy} was introduced by Burg [8].
The linear prediction parameters arc obtained by minimizing
the sum of the forward and backward prediction error encrgies

€,
N-d M-
0= 3 1€l 2+ D {hpild (M
n-p n=p

subject to the constraint that the prediction parameters satisfy a
recursion relationship [5]. e,, is the forward prediction error
with madel order p and is given by
£
epn = E ap&—rn -k (2)

k-0
and by, is the backward prediction error with model order p
and is given by

[4

— *
bon = E arXn pok-

k=0

(3)
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Fig. 1. Available data in multiple regions. Passband (shaded region)

surrounded by vacant bands.

a,. are called linear prediction parameters,and the asterisk
denotes the complex conjugate operation.

If one is going to extrapolate from the available data beyond
the observed region, a straightforward way is to use the
estimated prediction parameters d,; and the measured data by
the following equations:

P .
Xno,= 2 Apk XN o) ks J>0; 4)
k=1

p

¢ = * .

Xm0 85X ek
k=1

j>0, (3)
where the caret denotes the estimated value.

If the data available are confined to multiple separate
spectral regions or passbands of equal width as illustrated in
Fig. 1, and one tries to extrapolate from the observed data to
the vacant bands, an intuitive method is to divide the inner
vacant band into two parts of equal width and to extrapolate
into the left part by using the prediction parameters obtained
from the data set of region I and extrapolate into the right part
by using the model parameters obtained from the data set of
region II.

If the data sequence can be correctly expressed by the
prediction parameters, then the extrapolation error, which is
defined as the absolute value of the complex difference
between the actual values (either computer generated or
measured values) and extrapolated values, would be very
small. However, if the prediction parameters cannot model the
sequence correctly, the error of extrapolation may accumulate.
We have found that the linear prediction model which
characterizes the data sequence is more accurate for longer
data strings and larger model orders, especially in the presence
of noise. However, the model order should not exceed half the
number of samples because the estimated spectrum will
produce spurious peaks [¢.,.

In order to utilize the information available in different
regions, a new itcrative algorithm using the Burg algorithm to
estimate the prediction parameters and an iterative procedure
is proposed. The procedure illustrated in Fig. 2 is as follows.

1) Divide the inner vacant band into two pants of cqual
width. Extrapolate into the left part by using the
prediction parameters obtained from the data set of
region [ and extrapolate into the right part by using the
prediction parameters obtained from the data set of
region II. If the bands are not cqual in width, unequal
division of the vacant intervening bands may be appro-
priate.
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Convergence Test
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Use data in II1 and {aj}i to estimate
new data values In reg;on I. Use IV
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Calculate error

e, = EI + E

i 11

For the resultant data is in step 3:
If eg < eg.3, 1+1 * 1, go from step
3 to 2 otherwise iteration stopped,

Fig. 2. Schematic diagram of the proposed new iterative extrapolation method.

With the vacant bands’ data together with the observed
data, use the Burg algorithm to find a new set of
prediction parameters.

Using this set of prediction parameters and the data of
region I, extrapolate into the left part of vacant bands,
and using the same set of prediction parameters and the
data in region I, extrapolate into the right part of the
vacant bands.

Using this set of parameters together with the extrapo-
lated data, estimatc the data in the observation region 1
and I1. Calculate the error encrgy between the measured
data and the estimated data in the obscrvation regions.
The error encrgy is denoted by E, and is given by

E=Y Ix~&+x -2 2= le|?+]b]3

: '

(6)

where x, are the measurcd data, X, are the forward

5)

6)
7)

8)

estimation of x;, X are the backward estimation of x;, e,
is the forward prediction error, and b, is the backward
prediction error.

With the measurcd data together with the estimated
vacant bands data, use the Burg algorithm to find a new
set of prediction parameters. From the measured data
and this new set of prediction parameters, extrapolate the
vacant bands’ data as described in step 3.

Use the same procedure of step 4 to calculate the new
error energy of the passbands, call it E,.

Compare E, with £;, if £, is smaller than £, replace the
error energy E, by E,, repeat step S.

If E; is greater than £, stop the iteration, and take the
extrapolated data of the previous loop as the final result.

In step 1. if the width of a single band (band I and/or band
I} is not large enough, the extrapolation crrors produced by
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the prediction parameters obtained from single passband data
may be very large, in that case, we can set the data in the
vacant bands to zero.

The above iterative method can be easily applied to the case
where only one single data band is available. The procedures
are almost the same except that only one data sequence is used
to extrapolate to the exterior bands and to calculate the
extrapolation errors.

I11. SCATTERING PROPERTIES OF A METALLIC OBJECT

In this section we shall show that under the high frequency
approximation the scattered fields of a metallic object can be
expressed as superposition of scattered fields of discrete
scattering centers. These phenomena allow us to apply the
proposed extrapolation algorithm to radar imaging.

For a metallic object large compared with wavelength, the
scattering mechanism can be divided into the following
components [9]:

1) specular scattering points,

2) scattering from surface discontinuity: edges, comers,
tips etc..

3) scattering from surface derivative discontinuities;

4) creeping waves;

S) traveling waves;

6) scattering from concave regions;

7) multiple scattering points.

For most situations, the major contributions to the scattered
waves are ascribed to the specular scattering points and edge
diffractions.

Consider a metallic object seated on a rotated pedestal and
illuminated by a plane wave as shown in Fig. 3. The distance
between the rotation center O and the transmitter and receiver
are R, and R,, respectively, and the unit vectors in the
directions of transmitter and receiver are [, and [, respec-
tively. Under the physical optics and Born approximations, the
vector potential at the receiver under the far-field condition
can be expressed as [1]

Jk o MR, j
XX, St
X Hy(k)e*h -0 71 ds - (T)

where k is the wavenumber, Sy the illuminated region, A7)
the unit normal vector at the surface point 7’, and Ho(k) the
incident magnetic ficld at the rotation center. The scattered
ficld is related to the vector potential by

Ak, I, f,)=4 2A(F")

Exk, I, [)=jwd k[, I) ®

where ;fr is the transverse component of A along the direction
.

As k approaches infinity, the asymptotic expression of the
above equation can be obtained by applying the stationary
phasc method {8] to (8). The result is
- Jk Jj2x
Ak, [, 1) = =0 R :

e d 4z R, 2/: k \/Sl

2A(F))

x Fl(k)ennt - 5" (9)
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where F/ ' are the vectors such that

dur,—r,)-ml o 0
da’ r’,rl!
and

axd,-1h) - 7l

Sz 2

where d/da’ is the derivative with respect to the surface
curvature. The points ?: corresponding to the solutions of (11)
are called stationary points or equiphase points or the
scattering centers, the term A(F/) X Byk)/NS, = @ is
called the scattering strength for the particular scattering
center at /. It is seen that the locations of the scattering
centers depend on the directions of [, [, as well as the shape of
the metallic surface. The scattering strength depends on the
local properties of the scattering centers. The above analysis
illustrates that the object function we would be dealing with in
high-frequency radar imaging are of discrete form consisting
of point scattering centers.

If the received scattered fields have been calibrated with a
reference target [1], the corrected vector potential can be
expressed as

Ak, b, [)=3 Ger-on, (12)

I

The Fourier transform of (12) will give the range profile and
scattering strength of the scattering centers.

1V. REsuLTs

In this section, the performance of the proposed new
algorithm using both simulated and realistic data will be
evaluated. First, assume for simplicity an object consisting of
n point scatterers located at (ro + y)) is illuminated by a plane
wave, where r, is the distance between the transmitter/receiver
and a reference point of the object and y, is the differential
range of the jth scatterer (range relative to rg). Under far field
condition and ignoring multiple scattering, and considering for
simplicity a scalarized version of (12), the corrected scalar
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ficld can be cxpressed as

E/ (k)= ae/?. (13)
7

In the following simulation, the theoretical values of E (k)
are calculated in 200 equally spaced frequency steps covering
the frequency range f; = 6 GHz to fxo = 16 GHz, with an
assumed signal to noise ratio set to 40 dB. These values
anticipate the realistic experimental data utilized in testing the
algorithm,

Assuming the available (computed) data are in the following
passband ( f3, fio) and ( f120, f170)- We want to extrapolate the
data to the vacant bands (fi, f2), (Sfs1, S129), and (fir1, Sao0)-
The range resolution obtained by the discrete Fourier trans-
form (DFT) method using the whole bandwidth (f;, fa) is
about 1.5 cm. The resolution using a single frequency band is
about 5.5 cm. The resolution using both frequency bands is
about 2.0 cm, however, very high sidelobe levels will be
produced. We consider an object consisting of seven point
scatterers, the location and scattering strength for each point
scattercrare (ry, = —30cm,a, = 0.5),(r, = -20cm, a; =
0.9,(r= -10cm,a; = 0.5),(re = — 2cm, aq = 1), (rs
= 10cm, a5 = 0.25), (rs = 20 cm, a4 = 0.25), (r, = - 30
cm, a; = 0.25). The values of the field at each sampled
frequency f, are calculated using (13).

Define the extrapolation error at frequency f, as

eU)=1E; ()-E L)l

where £ ( f)) is the extrapolated value at f,. The extrapolation
errors for different algorithms are compared and shown in Fig.
4(a). The bold solid curve is the amplitude of the theoretically
computed fields E,'(f), the thin solid curves are the
extrapolation error after 100 iterations using the algorithm
proposed in [3], the dashed curves are obtained by using the
Burg algorithm to find the prediction parameters from the
respective passband, and using this set of parameters together
with data in each passband to extrapolate to the outside regions
(bands [1I and V). The dotted line curves are obtained using
this new algorithm with one iteration and with model order 25.
The algorithm proposed in [3] basically involves application of
the Gerchberg algorithm to data in the multiple restricted
regions. However, no numerical or experimental results are
given in that paper. It is clear from the results obtained here
that the algorithm in [3] seems not to be effective in the case
considcred as the errors can exceed the amplitude of the
theoretical fields. Extrapolation from single passband is not
good in this example, because the model order is not sufficient
to model the data series in the presence of noise. The proposed
new method after onc iteration is secn to produce small error.

The Fourier transform (FT) of the all-band data (i.e., data in
region [ to I'V), passband data only, passband plus extrapolated
data with the new proposed method are shown in Figs. 4(b)-
4(c), respectively. Note that the FT of spectral data yields
range profile of the scattering object. It 1s clear that FT using
passband data only (Fig. 4(c)) has very high sideclobe
structure, the FT of the extrapolated data using the algorithm
in [3] (Fig. 4(e)) is totally different from the original of Fig.
4(b). The result obtained by Fourier transforming the data
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Fig. 4. (a) Magnitude of theoretical fields and comparison of extrapolation
errors of different methods.f. = 6 GHz, fio = 16 GHz. —— magnitude
of theoretical fields; -—: extrapolation error from a single passband. no
iteration; ....: cx(rapolabon errors from new iterative algorithm;

extrapolation errors from algorithm proposed in [3]. (b) FFT of the whole
band data. (c) FFT of the passband data. (d) FFT of the passband and
extrapolated data with one iteration. (¢) FFT of the passhand and
extrapolated data using algorithm proposed in [3].

generated by the proposed algorithm is shown in Fig. 4(d)
which exhibits excellent agreement with the all-band result of
Fig. 4(b). The magnitudes of the peaks in Figs. 4(b) and 4(d)
depart from the original assigned values because of zero
padding used in the fast Fourier transform (FFT) algorithm.
This lack of fidelity in scattering strength reconstruction docs
not have a discernible degrading effect on the quality of image
reconstructed as will be illustrated below, but is important and
must be dealt with when quantitative analysis of scattering
strengths is needed.

If the frequency coverage is increased to f, = 6 GHz, fio
= 20 GHz) with the number of sampling points being fixed to
200 and the passbands are kept at { fia, fz0) and (fis0, fi70), the
computed fields and the extrapolation errors would be as
shown in Fig. S, Itis seen that the extrapolation error indicated
by the dashed line becomes smaller. If the frequency coverage
is decreased to ( f) = 6 GHz, fy0 = 12 GHz), the results would
be as shown in Fig. 6. It is scen that the extrapolation errors
indicated by the dashed and dotted curves are now both high.
The FFT of the whole band data. passband data only. and the
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Fig 6. (a) Magnitude of theoretical fields and comparison of extrapolation

errors with and without weration, f, = 6 GHz, fo = 12 GHz.
magnitude of theoretical fields; ----: extrapolation error from respective
passband, no iteration, ....: extrapolation errors from new iterative
algonthm. (b) FFT of the whole band data. (c) FFT of the passband data.
(d) FFT of the passband and extrapolated data with one iteration.

extrapolated plus passband data using this method are shown
in Figs. 6(b)-6(d), respectively. The results in Figs. § and 6
indicate the desirability of using segmented spectral data
spanning wider spectral ranges.

Although the above algorithm is an iterative one, it was
found that extrapolation crrors usually decrease significantly
after the first iteration, and further iterations do not scem to
improve the results. Therefore, it is practical and frequently
sufficient to use only one itcration.

The performance of the algorithm using realistic data is also
evaluated. The test object, a metalized 100:1 scale model of a
B-52 aircraft with 79-cm wing span and 68-cm long fuselage
was mounted on a computercontrolled elevation-over-azi-
muth positioner situated in an anechoic chamber environment.
Two hundred and one equal frequency steps covering the f) =
6.1 to fim = 17.5 GHz range were used to obtain the
frequency response of the object as described in [1]. The target
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tion errors without and with on iteration. : magnitude of theoretical
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extrapolation errors from new iterative algorithm. (b) FFT of the whole
band data. (¢) FFT of the passband data. (d) FFT of the passband and
extrapolated data with one iteration.

is positioned for a fixed elevation angle of 30° while the
azimuth angle was altered between 0° and 90° in steps of 0.7°
for a total of 128 angular looks.

The passband is first defined as ( f35, fa0) and (fi20, f170).
The measured values and the extrapolated errors of the
broadside look which is 90° from the head-on look are shown
in Fig. 7(a). The solid line curve is the amplitude of the range-
phase corrected field (see [1]). The dashed curve represents
the extrapolation error resulting from extrapolating from each
single band (bands I, II) with mode! order 25 as described in
step 1 of the proposed algorithm. The dotted line curves are
obtained using the new algorithm with one iteration and model
order 25. The extrapolation error for measurement is defined
in a manner similar to the definition of error in numerical
simulation as the magnitude of the difference between the
corrected measured fields and extrapolated fields. The Fourier
transform from the whole band data, the passband data only,
and the passband together with extrapolated data are shown in
Figs. 7(b), T(c), and 7(d) respectively. Fourier transform of
the corrected scattered fields will give the range profile of the
target in that view. In this figure, it is seen that the
extrapolation errors do not improve after one iteration. The
reason can be explained from the plot of the range profile
shown in Fig. 7(b). In this view direction, the major
contributions to the scattered ficlds are due to fusclage and
primarily those engines and fuel tank which are on the
illuminated side. Specular scattering from these points arc well
separated in time or distance and their number is small. Hence
the lincar prediction parameters obtained from single passband
are sufficient to model the data sequence. The euwrapolation
errors are not as small as those obtained by simulations. The
reason of this is that the applicability of lincar prediction
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(e)
Fig 8.

model to the extrapolation of scattered fields of a metallic
object is based on the high-frequency approximation. In the
measurement data. however, polarization effects. edge dif-
fraction. multiple scattering and the faiture to satisty the high
frequency approximation in the lower region of the frequency
band utilized in the measurement will degrade the performance
of the algorithm.

The reconstructed images of the test object using data
collected in an angular windows of 90° extending from head-
on to broadside in 128 looks (see [1] for details) and different
frequency bands are shown in Fig. 8. The transmitting antenna
is right-hand circularly polarized and the receiving antenna is
left-hand circularly polarized. which constitutes by the con-
vention given in [9] a co-polarized transmitting/receiving
system. Fig. 8(a) is obtained by using the whole band data:
Fig. 8(b) is obtained by using the passband data alone. Fig.
8(¢) and 8(d) are obtained by extrapolating without iteration
and after one iteration. respectively. The model order used is
M = 25 in both cases.

If the passband is defined as ( fos, fi3), the reconstructed
images obtained bv using the passband data alone and by
extrapolation without tteration and after one iteration are
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(g)

Reconstructed images of the metalized scale model B-52 aircraft using an angular window 90° extending from head-on to
broadside in 128 looks and different spectral coverage. Reconstructions trom: (a) Entire bandwidth ( £, f+,). (b) Passband ( fu..
S Ufisos fi-0)- o) Passband ( fia, fao)s ( fim. fi-0) and extrapolation data (extrapolated data into empty bands) without tteration. (d)
Passband ( f5, fuo). (fize. fi-) and extrapolation data with one iteration. (¢) Passband ( fae, f10). (D) Passband { fac, fis0) and
extrapolation Jdata without iteration. (g) Passbuand ( fue, fis) and extrapolation data with one iteration.

shown in Figs. 8(e). 8(f). and 8(g), respectively. The model
order used is also M = 25.

It is secn that the image quality of Figs. 8(c) and 8(e) are as
good as that of Fig. 8(a). These results show the etfectiveness
of the application of the proposed algorithm to radar imaging
from segmented data bands.

V. ConcLusioN

A new method employing the Burg algorithm and an
iterative procedure to extrapolate observed data beyond
restricted regions of observation has been proposed and tested.
Simulation and experimental results prove the effectiveness of
this proposed method. The algorithm is especially effective
when the spectra of the collected data (the object range profile
in this case) are in discrete form. Possible applications of this
new method can be found in diverse fields whenever the data 1s
available in restricted bands. For example, in multiple band
microwave imaging system. the quality of the image obtained
by extrapolating from a much smaller bandwidth can be as
good as that obtained by data in the full bandwidth. The cost of
the imaging system can hence bhe reduced drastically as the
cost of the required gear can be much lower than the cost of the
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gear to cover the full bandwidth and restrictions on use of
trequency bands can be accommodated.

REFERENCES

{11 N. H. Farhat, C. L. Werner. and T. H Chu. “"Prospects for three-
dimensional progective and tomographic amaging radar networks,
Radio Sci., vol. 19, no. S.pp 1347-1355. 1984

12) R. W. Gerchberg, "“Super-resolution through error energy reduction.
Opt. Acta, vol. 21, no. 9, pp. 708-720. 1974

131 Y. Yamakoshi and T. Sato, ““lterative image restoration from data
avatlable in multiple restricted regions,” Appl. Opt., vol. 21, no. 24,
pp. 44734480, 1982.

f4] C. Q. Lan. K. K. Xu, and G. Wade. “Limited angle ditfraction
tomography and its application (o plamir scanming systems.” JEEE
Trans. Sonics Ultrasonics, vol. SU-32_ no. |, pp. 9-16, 1985,

{S] S, 8 Bowling and S. Lai. “"The use of hnear prediction for the
interpolation and extrapolation of missing data and Jduta gaps prior to
spectral analysis.”” in Proc. RADC Spectrum Estimution Workshop,
Oct. 1979, pp. 39-49.

fol S M. Kay and S. L. Marple. “Spectrum anulysis—A modern
perspective.”” Proc. [EEE, vol. 69, pp. 13801419, Nov. {981,

"1 R. Q. Schmudt. “*Muitiple Emitter Locauon and Signal Parameter
Estimation,” " in Proc. RADC Spectrum Estimation Workshop, Oct.
1979, pp. 243-258.

{8] J P. Burg. ""A new analysis technique for time series data.”” NATO
Advanced Study Institute on Signal Pracessing with Emphasis on
Underwater Acoustics, pp. 12-23. Aug. 1968

v G. T. Ruck er al.. Radar Cross Section Handbook, G. T. Ruck.
Ed.  New York: Plenum, 1970. ch. 8.

{1 ] Mathews and R. L. Walker. Mathematical Methods of Physics,
2nd ed.  Menlo Park, CA: Benjarun, 1970,

Hsueh-Jyh Li was born in Yun-Lin, Taiwan,
Republic of China. on Avgust |,
received the B.S E E. degree from National Taiwan
University, Taipei. Taiwan. in {971, and the
M.S.EE from the Unversity of Pennsylvania.
Philadelphia. PA. in 1980,

Since 1973, he has been with the Department ot
Electrical Enginecring. National Taiwan Univer-
sity, where he s an Associate Professor. For the
period of September 1979-3uly {980, he studied at
the Universty ot Pennsylvama. Since [984. he has
been a research feliow at the Electro-Optics and Microwave-Optics Labora-
tory of the Umiversuity of Pennsylvania and s pursuing the Ph.D degree Hi.
MaIn rescarch interests are in microstrip antennas. microwave imaging and
radar cross section reduction.

PRASNSAC THONS ON ANTENNAS AND PROPAGATION VoL

1949 He

AP BSONO S MAY JoRT

Nabil H. Farhat (S'SR-M63-SM'72-F'81) re
coeived the B S¢ degree from the Techmon:lsruel
fostaute of Technology . Hata, brael, in 1957 the
MOSe dezree from the Umiversity of Tennessee.
Knoxsille, in 1959, and the Ph Do degree trom the
Unmiversity of Pennsylvama, Phidadelphia. in 1963,
abb i clectnical engincering

In 1964 he jomned the Fuculty ot the Moore
School o Electnical Engineering, University ot
Pennsyvania, where he s now g Protessor ot
Elecinical Engineering and heads the Electro-Optics
and Microwave -Opuics Laboratory His curreat research interests are in image
understanding. nicrowave maging and  holography. optical information
processing and modeling ot acurat network and setf-orgamzing systems i all
of which he has numerous publications. He is teaching courses 1in EM theory,
clectro-optics and holography on both graduate and undergraduate levels. His
past research included the study of the anteraction of EM radianon with
plasmas and solids 0 the context of faser output energy measurement and
photodetachment ot negative ions While Associate Protessor. he was named
to the Ennis Chair wn Electrical Engineering. In 1985 he was named
Distinguished Vistting Scientist at the Jet Propulsion Laboratory, Pasadena.
CA.

Dr. Farhat is a recipient of the University of Pennsyivania Christian R, and
Mary F. Lindback Foundation award for distinguished tcaching. He 1s 2
Fellow of the Insttute of Flectrica nd Electronics Engineers, and the Opuical
Socicty of Amenca. and s a member of Sigma Xi. Eta Kuppa Nu.. the New
York Academy ol Science. the American Institute of Physics. the American
Society for the Advancement of Scrence. the Franktia Institute and has served
on the National Board of Directors of Eta Kappa Nu and has been an RCA
consultant since 1969, He has served as Editor of Advances in Holography
and Associate Editor of Acoustical Imaging and Holography. He s
currently engaged in the preparation of twao texts: An [ntroduction to
Electro-Optics and Microwave Imaging and Hologruphyv-Theory and
Applications.

Yuhsyen Shen was born in Chai-Yi. Taiwan,
Republic of China. on October 20, 1954, He
received the B.S. degree in telecommunication
engineering from National Chiao-Tung University,
Hsing-Chu, Taiwan, Republic of China. in 1977

He had worked for two vears as an engineer with
Twwan Telecommumication Admimistranon m Tar-
wan. During 1981-1982. he was a Teaching Assist-
ant in the Department of Electrical Engineering.
Umversity of Pennsylvama, Philadelphia. Since
{982 he has been a Research Fellow at the Electro-
Optics and Microwave -Optics Laboratory at the same untversity. Currently he
15 a4 Ph.D condidate in electical engineering. His research interests include
mverse scattering . microwave imaging., digital signal processing. and opticat
information processing




Appendix IV

Microwave Diversity Imaging and
Automated Target Identification Based on
Models of Neural Networks

NABIL H. FARHAT

Reprinted from
PROCEEDINGS OF THE IEEE
Yol. 77, No. 5, 1989

PROC/77/5//27982




Microwave Diversity Imaging and
Automated Target Identification Based on
Models of Neural Networks

NABIL H. FARHAT, feLLow, IEEE

Invited Paper

Radar targets can be identified by either forming images with
sufficient resolution to be recognized by the human observer or
by forming signatures or representations of the target for auto-
mated machine recognition. Tomaographic Microwave Diversity
Imaging techmques that combine angular (aspect). spectral. and
polarization degrees of freedom have been shown, as summarnzed
in the first part of this paper, 1o be capable of producing images of
the scattenng centers of a target with near optical resolution.
Despite this capability there are circumstances when the size and/
or cost of the physical aperture needed to furnish angular degrees
of freedom s too high, or when the time delay involved 1n syn-
thesizing such an aperture through relatne motion between the
radar system and the object being imaged (3s, for example, 1n SAR
and ISAR) i1s not acceptable. One 1s faced then with the problem
of having to rdentity the target from a limited amaunt of informa-
tron that s insufficient to produce an identifiable image We show
that collective nonlinear signal processing based on models of
neural networks combined with the use of suitable target signa-
tures (here sinogram representations) offer the promise of robust
super-resolved  target identificaton  from  partial information
Results presented are of numencal simulations for a neuromorphic
processor where the neural net perfurms simultaneously the func-
tions of data storage, processing, and recognition by automatically
generating an identifying object label, and fast optoelectronic
architectures and hardware implementations are briefly men-
troned. Correct identification from as low as 10 percent of the full
sinogram representations denved from real data collected in an
anechoic chamber environment for three test targets (scale models
of B-52, AWAC, and Space Shuttle} and taught to the network is
demonstrated. Practical considerations and extensions to real sys-
tems are briefly discussed. The neuromorphic approach to target
identification introduced here has the promise of obviating the
need for large costly apertures that are needed for the imaging of
remote targets. It also suggests that nonlinear multidimensional
dynamical systems mav provide an avenue to the problem of target
tdentification from a single wide-band radar echo

[, INTRODUCTION

There are two distinct approaches to radar target iden-
tification. One is microwave image formation tollowed by
recognition and identification by a human observer, i.e., by
the eye-brain system. Here, one is concerned with con-
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cepts and methodologies for end'owing the images formed
with the highest resolution possible to facilitate their reli-
able identification by human ohservers. Near-optical res-
olution and costeffectiveness are usually the objective. The
second approach is automated recognition of the target by
4 machine using suitable target signatures or representa-
tions. This approach is called for when we do not have suf-
ficient information about the Radar Cross Section (RCS) of
the various parts of the object to be able to define it. Here,
oneis concerned with issues of correct identification given
partial or sketchy information irrespective of range or aspect
of the target or its location within the field of view with the
help of systems that can do this in robust and fault-tolerant
manner. in this second approach, the processing carried
out by the eye-brain system in identifying the image in the
first approach is to be mimicked by a machine. The motives
for automated recognition are varied with speed and cost
effectiveness ranking high among them. Both approaches
involve amplitude and phase measurements of radar echos
from complex-shaped objects as function of orientation,
frequency, and polarization using the same gear widely
employed in making complex RCS measurements. In the
following, the terms identification and recognition will be
used interchangably.

In this paper, we discuss both approaches described
above and show how they are interrelated and how an
understanding of the microwave imaging process anc tar-
get representation are required for the formulation of
methods for automated target identification. We begin in
Section [ with a qualitative review of the principles and
methodologies, of tomographic microwave diversity imag-
ing extensively studied and developed in our laboratory
where it is shown that microwave diversity imaging pro-
vides 3-D tomographic or projective images of scattering
objects with near-optical recolution employing spectral,
angular, and polarization degrees of freedom. Because of
space himitations, it is not the aim here to dwell at length
on the principles and methodologies of microwave diver-
sity imaging which have been adequately described in ear-
her pubhications [13-(8], [11}-[21]. Instead, the discusaion
here is made intentionally brief but with sufficient detail to
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provide the hackgrouad tor ensuing treatment of auto
mated target identitication. This 1s done by bronging out
those attributes ot microwave diversity imaging that are el
evant to avtomated machine recognition. This s followed
in Scction U by a discussion of a new approach 1o target
identitication from incomplete or sketchy intormation
based onmaodels of neural networks. The work is motivated
by the desire to further reduce the projected cost ot micio-
wave diversity imaging systems and by the fact that there
existimportant circumstances when areal (physical) or syn-
thetic baseline for an imaging aperture cannot be formed
because of physical constraints in the former or because
the time delay associated with aperture synthesis by target
motion in the context of Inverse Synthetic Aperture Radar
(ISAR) i1s not acceptable. The aim is therefore to achieve
automated recognition from partial information, especially
when the amount of information available about the target
is so meager that formulation of arecognizable image is out
of the question. Qur interes* in neural signal processing or
“brain-tike” processing is readily appreciated when one
notes the associative memory attributes of the eye-brain
system, its amazing ability at supplementing or completing
missing information, and the apparent ease and speed with
which it solves ill-posed problems of the type encountered
in vision, speech, and cognition in general. Neural pro-
cessing furnishes a new powerful approach to signal pro-
cessing that is both robust and fault tolerant and can be
extremely fast when implemented optoelectronically in
order to fully exploit the fit between what neural models
can offer (powerful collective, nonlinear, and iterative
(dynamical) processing) and what optics can offer (paral-
lelism and massive interconnectivity) [9], [10}. The discus-
sion n Section I includes descriptions of neural-net
models and refers to optoelectronic architectures for real-
izing content-addressable associative memories that can be
useful in radar target recognition. Results representing the
performance of software implementation of such neural
processors in the recognition of scale models of aerospace
targets employing sinogram representations are given. The
sinogram representation is chosen as an example of atarget
representation (feature space or signature space) that is
suitable for use with neural processors. Other represen-
tations  volving low-frequency polarization maps, e.g.,
plots of the state of polarization of the scattered field as a
function of frequency on an inclination angle versus ellip-
ticity angle Cartesian coordinate plane, and pole-residue
representation [29] of the scattered field, can be equally
considered.

Machine recognition with artificial neural networks relies
therefore on the generation of target signatures (represen-
tations of target features or attributes) that can lead to "'dis-
tortion tolerant” recognition, i.e., recognition irrespective
of target range, orientation, or location within the field of
v traditionally referred to as scale, rotation, and shift
invariant recognition. The generation of such representa-
tions usually involves the same gear employed in micro-
wave (uw) and millimeter-wave (mmw) diversity imaging or
in performing RCS measurements. In fact, the sinogram
representation contains, as will be shown below, exactly
the same information contained in a pw/mmw image of the
target vacept that the informaton is atrui.ged in a different
format that s more amenable for use in automated rec-
ognition schemes. The work presented here shows that

FARHAT MICROWAVE DIVERSITY IMAGING

supen resolved recognmon of complexsstiaped scatteanyg
abjects frony partial information that can be as fow as 20 to
10 percent of the sinogram representation s p()\,\lblt' with
neural net analog processors employing hetero-assocnative
storage and recall where the outcome s a word label
descabimg the recognized objedct. The neural net in this
sense perfarms the fundtions of storage, processing, and
recogntion tlhabeling) simultancously. The work also sug-
gestsapossible approach totargetidentification fromasin.
gle broad-band radar echo based on nonlineur dynamical
system theory and adaptive learning which will be briefly
outlined.

. Microwave Divirsiy IMAGING

Inthissection, a briefqualitative outline of the principles,
methodologies, and capabilities of microwave diversity
imaging is presented.

A. Principles

Target-shape estimation in the context of inverse scat-
tering from far-field data is a longstanding problem with
considerable present-day interest that has been studied by
many (sce, for example, [2], (3], (11]-(19]). it can be shown
from basic electromagnetic scattering theory, assuming that
physical optics and Born approximations hold, that
monostatic or bistatic measurement of the far field scat-
tered by an object as a function of illuminating frequency
and object aspect can be used to access the fourier space
T'(p) of the object-scattering y(r). Here, p and r are three-
dimensional 3-D position vectors in Fourier space and
object space, respectively. The object-scattering function
v can be loosely interpreted to represent the 3-D geomet-
rical distribution and strength (RCS) of those scattenng cen-
ters of the object that contribute to the ineasured field. The
Fourier space-data manifold I',,(p) measured in practice is
necessarily of a finite extent which depends on the values
of prealized in the measurement. These depend in turn on
geometry and on the angular and spectral windows uti-
lized. It is possible then to retrieve a diffraction and noise-
limited version v, of the object-scattering functions by 3.-D
fourier inversion of T',,,. In particular, tomographic or pro-
jective reconstruction of y, based on the projection-slice
theorem or the Radon transform (see, for example, [16]) have
been demonstrated from computed (2], {3}, (15}, [16] and
experimental [5) and [6) data. Image reconstruction using
a filtered back-projection algorithm has also been dem-
onstrated {20] and shown to yield images with equivalent
quality to those obtained by fourier inversion.

Accessing the Fourier space of a scatterer in pradtice is
notdirect. Itrequires preprocessing of the scattered far field
one measures inorder to remove an undesirable phase fac-
tor due to propagation between the target and the receiver
and to remove the effects of clutter and measurement sys.
tem response [6]-[8). The range-phase removal is essential
for image reconstruction and is synonomous with syn-
thesizing acommon phase reference or phase centeronthe
target. It can be interpreted as a Target Derived Reference
(TDR) method [21) in which the target itself is made to fur-
nishineffectthe reference phase for the complex field mea-
curements at an observation point. The vedtor nature of
electromagnetic scattering can be treated by assunming that
the scattering matrix which characienzes the polarization




propertios ot the target and hence provides added mtor-
mation, is measured at every frequency and aspect angle
at which the scatterng target s observed. A polanization
enhancedimage canm principle be obtained by incoherent
superposition taddion ot intensities) of the images formed
from the accessed Fourner-space data associated with each
otthetourcomponentsof the scattering matrx. Inthework
descabed below, polarization enhancement of the images
is achieved by incoherent superposition of images dernved
fromonly the copolarized and cross-pole rized components
of the scattered field.

The above concepts represent the basic principles on
which the methodologies of microwave diversity imaging,
discussed next, are based.

B. Methodologies

In our work, the Fourier space of a scattering object is
accessed using an automated experimental radar scattering
and microwave imaging facility (see Fig. 1. The facility en-
ables accessing the Fourier space of scale models of targets
of interest placed in an anechoic chamber over extended
microwave windows (10 MHz-26.5 GHz), for any state of
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polarization on the transnutting and recciving antennas, and
for any aspect or target viewing angle. The imstrumentation
shown measures the stepped frequency response ot the
scatterer. Virtually any radar imaging contiguration orinno-
vative imaging concept can be readily simulated costettec:
tively. Inverse synthetic aperture radar (1ISAR), spot-hght
unaging, and array inaging can all be simulated and stud-
ied. Also, any ilunminating pulse can be synthesized by con-
trolhing the amphtude and phase of the CW signals used to
illuminate and acquire the stepped frequency response of
the target. In the arrangement shown in Fig. 1, the trans-
mitting and receiving antennas are nearly monostatic, but
bistatic and multi-static measurements can also be per-
formed. State-of-the-art microwave instrumentation 1s used
to enable making complex scattered field measurements
with extremely high accuracy (+0.1dB, 0.5 degree) over
a dynamic range of better than 80 dB. Better accuracy is
achieved by averaging several independent readings ateach
measurement frequency. Frequency can be set automati-
cally with an accuracy of better than 4 Hz and with stability
of better than 240 Hz. Results demonstrating the capabil-
ities of the facility in microwave diversity imaging of several
representative targets are showr in Figs. 2 and 3. The Fou-
rier slices shown in Fig. 2 consist ot "1 plots of 128 fre-
quency responses of the test objective cusrected for range-
phase and system response taken over an angular window
of 90° extending in azimuth from head-on to broadside at
a fixed elevation angle 6 with each view containing 128 fre-
quency points. In these polar plots, frequency is along the
radial direction and aspect (azimuth angle} is in the angular
direction. Interpolation of the polar formatted data of a slice
ontoarectangular grid followed by Fourier inversion yields
in accordance to the projection slice theorem [22] a pro-
jection image ot the scattering centers of the test object.
The projection image represents the projection of the scat-
tering centers of the target on a plane normal to the azi-
muthal axis of rotation (plane parallel to the plane of the
Fourier slice). Fourier inversion of the frequency response
for a given viewing angle yields the complex impulse
response or complex range-profile of thetargetatthat angle.
The range-profile resembles the echo or response of the
target when subjected to impulsive plane-wave illumina-
tion for the given viewing angle. The complex nature of the
range-profile is caused by the fact that only positive spectral
windows can be employed in practice. By displaying the
modulus of the complex range-profiles side by side against
the azimuthal angle of rotation ¢, one obtains the sinogram
representation for a given elevation angle § of the object.
Sinograms are discussed further and utilized in Section HI.

Fig. 3 shows examples of projection images of two test
objects and the process of their enhancement by polariza-
tion diversity and symmetrization. Circularly polarized
plane-wave illumination was used, and both the co-polar-
ized and cross-polarized components of the scattered field
were measured; associated Fourier space slices were
formed from which images were obtained. Itis evident from
theimages formed, for the different polarization states, that
these contain some complementary information. There-
fore, some image enhancement can be expected when the
intensities of the co-polarized and cross-polarized images
are added as demonstrated by the images in Fig. 3(c).
Because manmade objects of interast in imaging radars are
invariably symmetrical and theiwr plane or planes of sym-
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(d)

Fig. 2. Results of microwave diversity imaging of a (70:1)
scale model of the space shuttle. (a) Object shown mounted
on azimuth positioner (turntable) at an inclination angle §
= 30°, magnitude of (b) co-polarized and (c) cross-polarized
Fourier space slices taken. (d) Polarization and symmetry-
enhanced projection image. (In (b) and (c), radial coordinate
represents frequency f and angular coordinate represents
azimuthal angle ¢, (6 < f < 17) GHz in 128 frequency steps
and 0 = ¢ = 90° in 128 angle increments.)

metry can be inferred from their heading, symmetrization
can be used to enhance the image further. As simple a con-
cept as it is, symmetrization is a powerful tool developed
in our work to exploit the afinity of the eye-brain system
inrecognizing symmetric patterns(e.g., ink blots employed
in cognitive experiments). In certain instances, poor images
that were hardly recognizable became meaningful and rec-
ognizable after symmetrization. Symmetrization of the
polarization enhanced images in Fig. 3(c) about the vertical
line of symmetry running through the fuselage was per-
formed digitally leading to the polarization and symmetry
enhanced images shown in Fig. 3(d). The image shown in
Fig 2(d) was polarization and symmetry enhanced in the
fashion described. Also, all images shown were actually
magnified in the vertical direction by a factor 1/cos § = 1.155,
8 being the inclination angle at which data was acquired,
in order to obtain a properly scaled projection image of the
scattering centers as they would be seen for example, in a
top view of the test object shown in Fig. 2(a). It 1s seen that
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B-52 Airplane

Space Shuttle

(a)

(b)

[{9)]

(d)

Fig. 3. Examples of projection images of two test objects.
(a) Co-polarized image (b} Cross-polarized image. (c) Polar-
ization enhanced image. (d) Symmetry enhanced image.

features of the test objects used are delineated clearly in
correct geometrical relation and relative size enabling quick
recognition of the scatterer by the eye-brain system. The
image resolution achieved is of the order of 2cm emploving
a (16-17)-GHz spectral window. It is worth noting that all
images are naturally edge enhanced because of the spec-
ular nature of microwave scattering from smooth flat sur-
faces of the objects tested.

The quality and edge-enhanced nature of the microwave
diversity images obtained above suggest they are well suited
for automated pattern recognition by a machine, especially
since the TDR technique results in images that are always
centered within the image plane. This may be usetul in cer-
tain situations. But when a human observer (the ultimate
in pattern recognition systems) is available to analyze and
recognize theimage, the benefit< of automated recognition
of the image become questionable. Moreover, conven-
tional pattern recognition works best when a good image
is available and may falter when the image is incomplete
or the amount of available information about the object or
thetargetisinsufficient forimage formation. Of course, this
is exactly the challenge in practice, namely target recog-
nition from sketchy (partial and/or noisy) intormation which
when taken by itself would not be sufiicient to form a rec-
ognizable image. What is needed therefore is an automated
recognition algorithm, of the kind described below, that
can 1dentify objects or targets even when the available
intormation is sketchy.




Among s many astounding information processing
capabilities, such as robustness and fault tolerance, the
brain i» also able to recognize objects from partial infor-
mation. We can recognize a partially obscured or shad-
owed face of an acquaintance or a mutilated photograph
of someone we know with litile difficulty, and in reading
text we are easily able to fill-in for misspelled or mistyped
words. The same is true with understanding spoken lan-
guage. The brain has a knack for supplementing missing
information. Capitalizing on this observation and on our
knowledge of neural models and their collective compu-
tational properties, a study of “neural processing” for
recognizing microwave objects from partial information
was undertaken, Details and results are given in the next
section.

HI. AUTOMATED TARGET RECOGNITION BASED ON MODELS
OF NEURAL NeTs

Neural-net models and their analogs furnish a new
approach to signal processing that is nonlinear collective,
robust, and fault tolerant. These models are highly stylized
versions of biological neural nets in which neurons act as
decision-making elements and the weights of intercon-
nections between them represent the stored information
or memory. A neuron receives exitatory and inhibitory
inputs from other neurons and decides to fire, sending its
own signal in the form of a train of impulses to other neu-
rons, or not to fire, depending on whether or not the sum
of the input signals to the neuron exceeds or not a pre-
scribed threshold. The rate of firing (spike frequency) as a
function of the sum of inputs and threshold value repre-
sents the transfer function or response of the neuron. The
transfer function is usually highly nonlinear, making a
neural netin essence a nonlinear multidimensional dynam-
ical system with very rich phase-space behavior. A step
function response is assumed for the neurons in the treat-
ment here and discrete evolution of the state of the netin
time, taken as an iteration number, is adopted. This results
in a neural net with binary neurons (neurons firing or not
firing). The state vector of such a net consisting of say N
neurons, is represented then by a point in the N-dimen-
sional phase-space of the net falling on the vertix of a hyper-
cube and the behavior of the net can be visualized as
stepped motion of the state vectors in phase-space over the
verticies uf the hypercube. The specific phase-space tra-
jectory of a net depends on the weights or connectivity
matrix, the neurons response and their threshold level, on
initial state of the net, and on any external input signals the
neurons receive besides input signals from other neurons.
The recipe used below for storing information in the net
produces fixed points in phase-space of the nel that act as
attractors for initial states that fall within their basins of
attraction; this operation represents the associative mem-
ory or content addressable memory attribute of such net-
works and their ability to supplement missing information
that will be elaborated on below. The dynamical phase-
space behavior sketched above is what distinguishes the
neural-net processing (neuromorphic processing) para-
digm from other approachesto signal processing and is the
underlying basis for the new approach to target identifi-
cation from partial information we present in this and sub-
sequent sections. In this approach, the measured micro-
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wave scattering data is placed first in a format suited for
neural-net processing before the above associative mem-
ory function is activated, as will be detailed later. Optical
implementations of neural nets (see, for example, (9] and
{10]) are attractive because of the inherent parafletism and
massive interconnection capabitities provided by optics,
and because of emergent optical technologies that promise
high resolution and high-speed programmable spatial light
modulators (SLMs) and arrays of bistable optical devices
(optical decision making elements) that can facilitate the
implementation and study of large networks. Optical
implementation of a one-dimensional network of 32 neu-
rons exhibiting robust content-addressability ana associ-
ative recall has already been demonstrated to illustrate the
above advantages [10]. By robust we mean fault tolerance
and the ability to correctly recall from partial input data
which may also contain errors. By one-dimensional we mean
that (in the architecture used there), the neurons are
deployed on a line. Two-dimensional arrangements of neu-
rons are also possible and these are of interest because they
are suitable for the processing of 2-D image data or 2-D
object representations directly as described below, and
offer a way for optical implementation of denser networks.

In the remainder of this section, we will discuss content
addressable memory (CAM) architectures based on parti-
tioning of the four-dimensional memory or interconnec-
tion matrix T,,, encountered in the storage of 2-D entities.
A specific architecture and implementation based on the
use of partitioned unipolar binary (u.b.) memory matrix and
the use of adaptive thresholding in the feedback loop rel-
evant to the treatment given below have been described
elsewhere [23]. The use of u.b. memory masks greatly sim-
plifies optical implementations and facilitates the realiza-
tion of larger networks (10°-10* neurons). Numerical sim-
ulations of the use of such 2-D networks in the recognition
of dilute point-like objects similar to those arising in radar
and other similar remote sensing imaging applications show
that dilute objects pose a problem for CAM storage because
of the small Hamming distance between them. The Ham-
ming distance between two binary vectors or matrices of
the same dimension is the number of bits in which they
differ. We show that coding in the form of a sinogram rep-
resentation or feature space of the dilute objectcan remove
this limitation and leads to recognition from partial versions
of the stored entities. The advantage of this capability in
super resolved recognition of radar targets, where the prin-
ciples and methodologies of microwave diversity imaging
described earlier are employed to form sinogram repre-
sentations that are compatible with 2-D CAM storage and
interrogation, are discussed. Super-resolved automated
recognition of scale models of three acrospace objects from
partial information that can be as low as 10 percent of a
learned entity is demonstrated employing hetero-associ-
ative storage and recall where the recognition outcome is
a word labe! describing the recognized object. The treat-
ment here is similar to one we have given elsewhere [23].

A. Two-Dimensional Neural Nets

Storage and readout of 2-D entities in a content address-
able or associative memory is described next. Given a set
of M 2.D bipolar binary { +1, — 1] patterns or entities v,
m=1,2---Meachof N x Nelements,i.e.,, N x Nbipolar
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binary matrices, these can be stored in a manner thatis a
direct extension of the outer product storage formula for
1-D entities [31), [9), {10] as follows: For each element of a
matrix, a new N x N matrix is formed by multiplying the
value of the element by all elements of the matrixincluding
itself taking the self product as zero. The outcome is a new
set of N2 binary bipolar matrices each of N x N elements.
A formal description of this operation is

o Vv gk =2, N
T = (1
0 i=kj=1

whichis afour-dimensional matrix. An overall or composite
synaptic matrix or connectivity memory matrix is formed
then by adding all 4-D matrices T)7), i.e.,

4

Ty = 2 Ti0. )
m

This symmetric 4-D matrix has elements that range in value
between —M to M in steps of two and which assume values
of +Tand —1(and zeros for the self-product elements) when
the matrix is clipped or thresholded, as isusually preferable
for optical implementations[10],{23). Two-dimensional uni-
polar binary [0 1] entities b;™ are frequently encountered
in practice (e.g., binarized images and object representa-
tion). These can be transformed into bipolar binary matri-
ces by forming v;™ = (2b{™ — 1), which are then used to
form the 4-D connectivity matrix or memory matrix as
described before. Also, as in the 1-D neural-net case, the
prompting or initializing entity can be unipolar binary
b,™, which would simplify further optical implementations
in incoherent light [10], {23).

Architectures for optical implementation of 2-D neural
nets must contend with the task of realizing a 4D memory
or interconnectivity matrix. Here, a scheme is presented
thatis based on partitioning the 4D memory matrix into an
array of N x N 2-D matrices each of which containing N x
Nelements. Thus, a 2-D neural net of N x N = 32 x 32 neu-
rons would contain N*interconnections, i.e., over a million
interconnections, which shows why hardware implemen-
tations that use light and optical interconnections rather
than electronic interconnects are attractive. Provided that
the number of entities stored is not excessive (see below),
the 4-D interconnection matrix thus formed makes the sta-
ble states of the net (attractors in phase-space) identical to
the entities stored. The maximum number of 2-D entities
that can be stored in this fashion without degradation of
recall is M = N¥/8InN, which follows directly from the stor-
age capacity formula for the 1-D neural-net case [24]. When
initiated from a partial version of a given state, the network
quickly converges, inamatterof afew iterations (see below)
or time constants of the “‘neuron,” to the stored entity clos-
est in the Hamming sense to the initiating vector or matrix.
This nearest neighbor search of the memory matrix for a

given entity b, is done by forming the estimate

N
by = ?7 Taubit® ik =12 ,N (3
followed by thresholding to obtain a new unipolar binary
matrix which 1s used to replace b," in (3); the procedure
is repeated to obtain a new estimate or state matrix. This
process is repeated again and again until the state matrix
or “vector” converges to the stored entity closest to the
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initializing matrix bﬁ;"“'. This iterative process describes
motion of the state “vector” of this 2-D netin ity phase-space
and can be viewed as a multidimensional, nonlinear, dis-
crete, dynamical system describing the net's evolution from
iteration to iteration. Architectures for optoelectronic
implementation of the auto-associative storage and recall
process described above based on partitioning the 4.0
interconnection matrix in an array of N x N submatrices
each of N x N elements have been described in detail else-
where [23].

8. Sinogram Representation and Hetero-Associative
Storage

Sinograms are object representations encountered in
tomography [25], (26]). In simple terms applicable to micro-
wave scattering, the sinogram of a scattering object is a
Cartesian plot of the measured relative range or differential
range of scattering centers on the object versus aspect
angle. A scattering center is defined as any structural detail
on the object that contributes to the measured scattered
field. In our work, the sinogram of a target is formed by
measuring the range-profile or differential range of the tar-
get as a function of the aspect angle and fixed elevation
angle § (see Fig. 4(c)) and by arranging the modulus of the
measured range-profiles as vertical line intensity patterns
side-by-side as function of aspect angle (for example, range-
profiles versus azimuthal angle ¢ in Fig. 4(c) at fixed ele-
vation angle 8). Sinogram construction is iliustrated in Fig.
4 for a planar object consisting of three points of unequal
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strength. This object is chosen to represent a highly sim-
plified radar target. Every point (or scattering center) of the
object generates a sinusoidal trace in the sinogram whose
amplitude is determined by the radial distance of that point
from the center of rotation, whose phase is determined by
the angular position of that point, and whose brightness or
strength (represented in Fig. 4(b) by line thickness) is pro-
portional to the strength of the scattering center. Note that
scatterer 3, whose position coincides with the center of
rotation, produced a zero amplitude line in the sinogram.
A compilete sinogram is produced by rotating the object
360°. It is worth noting that the range-profile of an object
isindependent of its far-field distance from the transmitter/
receiver (T/R) in Fig. 4(a) or Fig. 4(c). The range-profile
depends, however, on object aspect and on the spectral
window and polarization used in data acquisition (see Sec-
tion 11-B).

Sinogramsare particularly useful whenthe objectis point-
like and sparse or dilute, as is the case in microwave diver-
sity imaging where the images formed consist ordinarily of
a finite number of isolated scattering centers. Given a set
of 2-D dilute objects (each consisting of a collection of a
finite number of distinct point scatterers) and their cor-
responding set of associated sinogram representations, the
Hamming distances between the sinogram representations
will always be found to be greater than the Hamming dis-
tances between the objects themselves. This is assuming
that objects and sinograms are quantized onto the same
number and grid of binary pixels. The reason for this is that
each pointofthe object produces adistinct sinusoidal trace
and thus spawns manv points (n the sinogiam represen-
tation. Therefore, if (for example) two dilute objects differ
in only two pixels, their sinogram representation will differ
by two sinusoidal traces and. hence, in many pixels. The
increased Hammung distance makes it easier for an asso-
ciative memory to distinguish between the sinograms than
todistinguish between the objects themselves. This has the
added attraction of making 1t fess difficult to distinguish
between similar objects. that is, objects with small Ham-
ming distances petween them. Sinogram representations
also have the advantage o1 being useful, as will be clarified
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below. in achieving distortion invariant (scale, rotation, and
translation invariant) recognition.

In laboratory work, the sinogram representation of a
complex-shaped test object 1s obtained as depicted in Fig.
4(c), which is a highly simplified version of the measure-
ment system of Fig. 1. The number of range-profiles N
needed to characterize the object and the number of sam-
ples N within each range-profile are determined by angu-
lar and spectral sampling considerations. Thus, for an object
with maximum extent {, the maximum number ot angular
samples in one azimuthal direction is N, = 4nL \,,,, and
the maximum number of samples Ng within a range-profile
is Ng = N, = 2Afl'c, where Af is the width of the spectral
window used, N. s the number of frequency points, ¢ is the
velocity of light, and A\, is the shortest wavelength used.
The sinogram of an actual microwave target differs in
appearance from the sinogram of the idealized object
described above in that the intensity or brightness of its
sinusoidal traces changes (fades in and out; with the aspect
or viewing angle because of the anisotropic nature of the
scattering centers on actual targets. Fig. 5 gives an example
of the sinogram of a scale model of a B-32 test object pro-
duced from a slice of its Fourier space (shown in Fig. 5(a))
obtained at an object inclination angile or ¢ = 30 isee Fig.
4(c)) employing the measurement facility of Fig. 1. Both
intensity and 3-D perspective displays of the resulting
sinogram are shown in Fig. 5(b) and (c), respectivelv. The
sinogram shown demonstratesclearly how sinusoidal traces
of the ditierent scattering centers fade in and out as a func-
tion of target aspect (here azimuth angle o) and how point-
like scattering centers such as the tips of engines and fuel
tanks (see the B-32 part of Fig. 3(d)) produce more distinct
traces than edge-like or extended scattering centers of the
target. Thus, the sinogram pattern tends to characterize the
target by its dominant point-like scattering centers that are
visible over an extended range of aspect angles. The sin-
ogram pattern is a map of the measured relative positions
between such centers as the target is rotated about a spec-
ified axis. Complete sinogram representation of a 3-D target
involves sinogram maps such as the one shown in Fig. 5 for
all elevation angles 6 of expected encounter. The range of

Fig. 3. Sinogram ot a 100: 1 scale model ot a B-52 test object. (a) Fourier space shce from
which the sinogram is generated by Intensity displav and (¢) 3-D perspective displav o1
the sinogram. Note "hroadside ” and "head on" are specified for inchination angle ot A

= 30°
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azimuth angles ¢ needed would be confined to those indi-
cated by practical encounter scenarios.

It is worth mentioning that the alignment of the range-
profiles to produce distinct sinusoidal traces in the range-
aspectdisplays (Fig. 5(b}and (c)) is an essential requirement
forimage reconstruction by back-projection [20]. The align-
ment process also defines the center of rotation or phase
center of the target, in that had a point scatterer been
located at the rotation center, it would produce a straight
line atconstantrangeinthe sinogram. The alignment s also
equivalent to the TDR procedure referred to in Section
1I-A and described in more detail elsewhere (8], [21]. Thus,
formation of a distinct sinogram is not only needed for rep-
resenting the target but it also an essential step for remov-
ing the unknown rangeto the phase center of the target and
the removal of undesirable effects associated with migra-
tion of its phase center with aspect. The crispness with
which one or more sinusoidal traces appearin the sinogram
inthisalignment process can serve as ameasure of how well
the unknown range to a common reference point (center
of rotation or phase center of the target) can be compen-
sated for in the different aspect looks at the target. Quan-
tization and thresholding of the sinogram pattern of Fig. 5
into a grid of N x N binary pixels yields the sinogram rep-
resentation b, of the target that is suitable for the associ-
ative storage and recall process described in Section !II-A.
In the top row of Fig. 6 are shown the sinogram represen-

Fig. 6. Hetero-associative storage. Sinogram representa-
tions (top) and associated word labels (bottom) of three
aerospace test objects.

tations of scale modeis of three aerospace test objects
(B-52, AWAC, and Space Shuttie) interpolated and digitized
onto a grid of 32 x 32 binary pixels. These are treated as a
learning set and stored hetero-associatively rather than
auto-associatively by replacing v, in (1) by r{]', where k,
I=1,2,---,32;m=1,2,3,andwhere 7]  are bipolar binary
versions of the abbreviated word labels shown in the bot-
tom row of Fig. 6 with which the three test objects are to
be associated. In this fashion, a nonsymmetric 4-D hetero-
associative memory or connectivity matrix T, is formed in
which the associations between tne three sinogram rep-
resentations and their word labels are embedded. The con-
nectivity matrix is used in the numerical simulations
described next.

IV. Resu-.TS

Numerical simulations of interrogating the hetero-asso-
ciatively formed memory matrix with complete and partial
versions of the three entities (sinogram representations)
stored in it following the procedures of Section I1l-A were
carried out. Complete and partial versions of the three
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stored sinogram representations were used to initialize the
network. The partial versions of the stored entities ranged
down to a fraction n = 10 percent of the full representation.
Here, n is the ratio of the number of range-profiles entered
to the total number of range profiles used to characterize
the object in its sinogram representation. Reliable identi-
fication of the partial sinogram input was found to occur
after one iteration for all entities stored down to n = 0.2
confirming convergence to a stable state even when the 7,
matrix is not symmetrical, as is usually required for con-
vergence [31]. This, and the observed speed of conver-
gence, may indicate a difference in the behavior of 2-D nets
and their 1-D counterparts whose reason is yet to be deter-
mined. Fory = 0.1 or less, successful recall of correct labels
was found to depend on the angular location of the partial
data with which the memory is presented. In most cases of
n = 0.1, the net labeled the partial initializing input cor-
rectly, as illustrated in the AWAC example of Fig. 7, and in
those cases when it did not do so, it produced a garbled
and/or contrast-reversed version of a label that resembled
one of the other labels (see the B-52 examples in Fig. 7).
Below 5 = 0.1, the reliability of recall deteriorates rapidly.
However, in nearly all simulations with partial input, failure
of the net to label the entry correctly was manifested by
convergence onto a garbled and/or contrast-reversed ver-
sion of one of the identifying labels. This behavior could
be usefully interpreted as the net indirating it has insuf.
ficient information and that more information is needed
before a decision (identification) can be made and that oth-
erwise no decision should be made.

Rapid ““one-shot” convergence to correct association
exhibited above even with small values of n means, in the
language of dynamical systems, that the fixed point-attrac-
tors (stored associations) in the phase-space of the net are
strong and they possess large basins of attractions.

The results above illustrate the potential of neuro-
morphic processing in object identification from partial sin-
ogram information (object representation). What is note-
worthy is that the net in those simulations performed the
functions of storage, processing, and labeling simulta-
neously, which is the hallmark of distributed collective pro-
cessing. The performance of such nets is also known from
other work to be robust and faulttolerant. In an actual hard-
ware implementation of a prototype neural net of 32 neu-
rons, correct associative recall from partial information
continued to take place even when nearly 20 percent of the
neurons were disabled [10]. The binary nature of the sin-
ogram representation resulting from interpolation and
thresholding the raw sinogram data (e.g., of Fig. 5(a)) is
expected to impart to it some immunity to noise present
in the measured data. To apply the method in practice, sev-
eral issues related to the generation of sinogram libraries
and to the ability to determine the aspect angles for which
data is collected must be considered. These are brieily
addressed in the following section.

V. Discussion

Methodologies of microwave diversity imaging studied
extensively at the Electro-Optics and Microwave Optics
Laboratory of the University of Pennsylvania for more than
two decades provide the basis for a new generation of 3-D
tomographic imaging radars that can furnish shape est-
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mates of the 3-O distribution of scattering centers on remote
aerospace targets with near-optical resolution. Arrays of
broad-band coherent transmitter-receiver pairs employing
the TDR technique can be used to access the Fourier space
of remote scattering targets. Resolution in such systems
depends on the angular and spectral windows, utilized for
data acquisition and on polarization diversity. Unprece-
dented centimeter resolution has been demonstrated in
projection rather than 3-D images of scale models of such
targets employing gigahertz spectral windows, wide angu-
lar windows of x/2[Rad.], and image enhancement by polar-
ization diversity and symmetrization. Image-reconstruc-
tion algorithms based on Fourier inversion or by filtered
backprojection are equally applicabie and have been found
to yield comparable results. The use of spectral, angular,
and polarization degrees of freedom in such imaging sys-
tems has the advantage of increasing the information con-
tent of the object-scattered wavefields. This enbles a broad-
band, polarization-selective array aperture to acquire more
information about a scattering object than it could have
monochromatically (at a single frequency) or at a single
polarization. A useful tradeoff between spectral and angu-
lar degrees of freedom exists. It enables considerable thin-
ning of the imaging array. Because angular degrees of free-
dom are associated with the number of elements or stations
in the array, their replacement with less costly spectral
degrees of freedom, associated with the number of fre-
quency points used in data acquisition, can cut cost and
lead to significant improvement in cost effectiveness.
Despite these attractive attributes of microwave diversity
imaging systems, there are circumstances when the base-
line (physical or synthetic) required to realize the wide
angular windows needed to achieve high resolution is not
available or is not sufficient to form a recognizable image.
One has to rely then on means of target identification other
than image formation and analysis by the eye-brain system.
The “neuromorphic” or ‘brain-like” processing
approach to super-resolved, robust, and fault tolerant rec-
ognition described in the preceding section is not only
intellectually attractive, providing for the first time a con-
nection between neural nets and applied electromagnetics,
but could also obviate the need for large expensive imaging
array systems (of the type needed in microwave diversity
.maging systems and other more conventional approaches
to radar target imaging) and can avoid the time spent for
aperture synthesis for example by target motion in ISAR
imaging. The implication of this for microwave (and other)
automated object-identification systems can be far reach-
ing and is sufficient motivation to search for a new gen-
eration of automated neuromorphic radar and sonar rec-
ognition systemns, that can identify remote targets fromonly
a few looks [27]. Many of the findings of the work reported
here also carry over to the domdin oi maching vision and
recognition for robotic applications. The problem then is
however more complex because objects of interest are not
found in perfect isolation as is the case in recognzing
aerospace targets. In the radar-targer identification sce-
nario, suitable target representations (signatures or feature
spaces) such as the sinogram representation described
above would be generated cost efiectively from scale
models of targets of interestin a controlled anechoic cham-
ber environment employing measurement systems, of the
tvpe we have described. The representations would be
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“taught’ to an associative memory or a neural network that
can be used to recognize partial sinogram representations
of actual targets collected by actual broad-band coherent
radar systems. Realization of this scenario entails carefu!
consideration to scaling issues and to the principles of
“electromagnetic similitude” [28] in order to ensure that
the sinogram representations collected using scale madels
in an anechoic chamber RCS measurement facility resem-
ble as closely as possible those of the actual targets. This
and other issues such as “fluctuations” of echos from actual
airborne targets because of flexing, deformation, or wind-
buffeting, the minimum number of looks (range-profiles)
needed to represent an actual target i.e., characterize it for
all practical encounter aspects; the number and size of
neural models needed for the identification of agiven num-
ber of targets, together with the use of sequential storage
and recall, and the self-organization and learning capabil-
ties of neural nets must be addressed before the neuro-
morphic approach to targetidentification can find practical
application. The latter capabilities have the potential of pro-
ducing improved neuromorphic target recognition
schemes that can learn the underlying structure of the asso-
ciations presented to them with generalization (i.e., non-
rote learning) [30). These issues and others are currently
under investigation (32]. The ultimate aim of this work is to
achieve reliable distortion independent recognition from
onelook. Inthis regard, we offer the following final remarks.
Because for fixed spectral window, the range profile of a
target is basically independent of range and depends only
on target aspect, the prospect of achieving recognition from
a single look (single range-profile) would mean complete
distortion-independent identification, that is, recognition
independent of target range or aspect. How can this be
done? One can conceive of the following approach or sce-
nario that is being considered in our work, [33), as a direct
extension of the ideas given in this paper. In this approach,
one seeks neural-net structures and storage recipes that
can produce prescribed controlled periodic attractors.
Periodic attractors are represented by closed trajectories
in phase-space. Thus, we envision a net in which we can
specify and obtain the next state of the net given the present
state in a closed or open sequence of states to enable stor-
age and recall of prescribed sequences of state vectors
instead of the *‘fixed point’ phase-space attractors encoun-
tered in the above hetero-associative storage and recall
work. Each periodic attractor in the envisioned net would
consist of a sequence of state vectors, representing, for
evample, thresholded versions of angularly adjacent range-
profiles oi a target, with each sequence containing an extra
lable vector inserted to identify the target associated with
that sequence or periodic attractor. A periodic attractor of
the net associated with a given target, would be triggered
when the net is initiated by either an initial state that coin-
cides with one of the constituent thresholded range-pro-
files of that attractor or by an initial state that is sufficiently
close to any one of the constituent range-profiles in the
Hamming sense. No matter which thresholded range-pro-
file is used to initiate it, the net would eventually end up
cycling through the associated periodic attractor and,
hence, through all other associated range-profiles, includ-
ing the labe! state vector whose occurrence we assume can
be isolated and used to trigger an identification marker of
the target, thus identifying 1t from the single available ini-
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tializing range-profile data. Although in its early stages of
development, the above ““phase-space engineering” con-
cept and possible scenario for automated target identifi-
cation from a single wideband radio echo helps one appre-
ciate of the unique possibilities and power of the neural
paradigm and the collective nonlinear dynamical system
theory approach to signal processing.
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Echo Inversion and Target Shape Estimation by
Neuromorphic Processing
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Abstract— A neural net processor is described for echo inversions and target shape estimations from incomplete
frequency response data. The processor accomplishes the inversion and estimation by minimizing an energy
function which bears information about the measured data, as well as the relationship between the target shape
function (image) to be reconstructed and its frequency response. An iterative algorithm is developed for the
processor to minimize its energy function to give the desired image as its neural state outputs. Successful digital
reconstructions with the neural net processor using microwave radar imaging data are presented and an opto-
electronic implementation of the processor is described. Heuristic extension 10 make the processor more neu-
romorphic by introducing nonlinearity is discussed and digital reconstructions with this extension are shown;

these reflect noticeable improvement in image quality.

Keywords—Neural processing, Radar imaging, Recovery from partial information, Ill-posedness, Regulari-

zation, Opto-electronic architectures.
I. INTRODUCTION

Neural net models and their analogs (Ballard, 1986;
Hopfield, 1982) represent a new approach to collec-
tive signal processing that is robust and fault tolerant
and can be extremely fast. These properties stem
directly from well recognized information processing
capabilities of the brain. Although the brain is not
as good in arithmetic operations as a digital com-
puter, it is known that when it comes to operations
such as association, categorization, classification,
feature extraction, recognition, and optimization, it
can outperform even the most powerful up-to-date
computers. Collective information processing in the
brain makes use of the massive interconnectivity of
ncurons (the decision making elements) of the brain
and their ability to store information as weights of
links between them. The brain’s amazing capabilities
in analyzing sensory data along with its complex
thought and intelligent reasoning ability makes it an
intriguing model for smart sensing and automated
recognition systems. An interesting aspect of the

This research was supported by Army Research Office and
the Jet Propulsion Laboratory.

Requests for repnnts should be sent to Nabil H. Farhat, Uni-
versity of Pennsylvania, The Moore School of Electrical Engi-
neering, Electro-Optics and Microwave-Optics Laboratory,
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brain’s ability to process sensory data is the ease with
which it solves computationally complex problems,
associated for example with vision, that are basically
inverse problems which are known to be computa-
tionally vexing because of their ill-posedness (Tik-
honov & Arsenin, 1977). When processing sensory
data, t*e brain can still perform its tasks successfully
even when the information it is presented is partial
(or incomplete) and contains errors. Based on those
remarkable information processing capabilities of
neurons in the brain, a neural net processor is studied
and reported upon here in the context of image re-
constructions from incomplete data.

The problem of image (or object function) recon-
struction from limited frequency data arises in many
remote sensing applications including radar and
sonar imaging. A one-dimensional object function
f{(r) of limited extent possesses a frequency response
(Fourier transform) F( p) that extends over the entire
frequency space. In practice, the frequency response
F(p) can only be measured over a finite region of
the frequency space (p-space). The traditional ap-
proach by Fourier inversion of the measured re-
sponse F,(p) yiclds an imperfect estimate f(r) of the
object function because values of F(p) outside the
frequency measurement window are taken to be zero
which violates a priori knowledge. Retrieval of f(r)
from F,(p) is also known to be an ill-posed problem
in the sense that noise contamination and incom-




118

pletencess of the measured response F(p) can result
in large fluctuations in object function reconstruce-
tions. The neural net processor to be discussed ac-
complishes the reconstruction from incomplete
frequency response data by minimizing an energy
function which bears information about the mea-
sured data, the underlying (Fourier) relationship pe-
tween the object function and the measured data.
The energy function is set up in such a way as tc
agree with a priori knowledge and overcome the ill-
posedness of the problem. An iterative algorithm for
the processor is derived and its performance evalu-
ated numerically in the reconstruction of radar range
profiles from realistic data will be presented. The
realistic data are collected in a broad-band micro-
wave cross-section measurement facility employing
microwave diversity techniques in which angular,
spectral, and polarization degrees of frcedom are
combined to extract maximum information about the
scattering object. Therefore all the following discus-
sion with regards to imaging will be relevant to mi-
crowave diversity radar imaging.

The implementation of the neural net processor
can be achieved opto-electronically. The massive
connectivity and parallelism of the neural net pro-
cessor can be realized by optics while the decision
making and any required gain can be realized by
electronics. The detailed implementation scheme of
the neural net processor will be discussed. Finally.
heuristic extension of the neural net processor to
include nonlinear neural mapping, which makes it
more neuromorphic, will be discussed and the re-
construction of microwave diversity radar image
based on this extension will also be given.

II. BACKGROUND

In microwave diversity radar imaging (Farhat, Wer-
ner, & Chu, 1985a) as well as in many other radar
imaging applications, such as synthetic aperture ra-
dar, ctc., the frequency response of an object (or
target) to be imaged can be accessed only for a lim-
ited frecquency band and a limited range of aspect
viewing angles, because of instrument limitations and
other practical reasc.as. The data in the microwave
imaging system described in Farhat et al. (1985a) are
collected over a polar format or polar frequency grid
depicted in Figure 1. Here p, and p, are Cartesian
coordinates of spatial frequency space ( p-space); p,
and p, are the start and stop spatial frequencies,
respectively. associated with the start and stop fre-
quencies w; and w. employed in gathering the fre-
quency responsc data; 8, is the start viewing angle
and 6, the stop viewing angle. and A8 is the total
viewing angle. The purpose of microwave imaging is
to extract information such as the size and shape.
about a scattering target through microwave scatter-
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FIGURE 1. The p-space data collection in microwave Imag-
Ing.
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ing measurement; to achieve this goal in three di-
mensions for a 3-dimensional (3-D) object in reality,
the frequency scattering measurement has to be car-
ried out in tne 3-D Fourier or frequency space of the
object. But measurement over 3-D manifold in Four-
ier space is impractical. On the other hand, the 2-
dimensional (2-D) frequency space grid shown in Fig-
ure 1, which represents a slice of the 3-D frequency
space, can be easily accessed with practically feasible
radar systems (Farhat et al., 1985a). When inverted,
this 2-D frequency space measurement gives rise to
a 2-D projection image of the 3-D object and with
sufficiently wide angular windo . (range of aspect
angles) A6 enough image information for identifi-
ca‘ion of the object can be obtained as will be seen
in the resuits shown later. The 2-D image can be
reconstructed from the frequency measurement over
the frequency space grid in Figure 1 by invoking the
filtered back-projection theorem (Farhat, Ho, &
Chang, 1983) as follows: first, 1-dimensional (1-D)
inversion along the radial direction with respect to
the variable p for a given aspect angle @ is done to
obtain the so called range-profile which bears infor-
mation about the projection of the scattering centers
of the 3-D object on the line of sight of the inter-
rogating radar or a radar cross-section measurement
system for the given aspect angle 6. Then, the 2-D
image is reconstructed by coherently summing the
filtered back-projected value (Farhat et al., 1983) of
every range profile for all aspect angles taken in the
imaging process (see Farhat et al. (1983) for more
details).

The 2-D object function to be reconstructed
should reveal the size and shape of the scattering
target. Such a 2-D object function can be found un-
der general approximations. There are two approx-
imations involved in high resolution microwave
imaging work. One is the physical optics approxi-
mation. which requires the wave-length of the mi-
crowave used for imaging be smaller than the
characteristic size of the object, and the other is the
Born approximation, which ignores multiple scatter-
ing at the object (Farhat et al., 1985a; Ruck, Barrick.
Stuart, & Krichbaum, 1970). If the imaging fre-
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quency band (spectral window) w € [w,, w,] is chosen
to satisfy both approximations, it can be rigorously
shown (Chan & Farhat, 1981) that the frequency
response F(p. 8) (or F(w, 8)) corresponds to a real
object function when the object is perfectly con-
ducting or when it is composed of a lossless dielectric.
We will concentrate on this kind of object; however,
the method presented can be extended to other kind
of objects.

From the 2-D image reconstruction procedure
mentioned earlier, it is seen that the 2-D image is
just a projected summation of range profiles over the
0 direction and this summation process is, of course,
well-posed (Hadamard, 1923; Tikhonov & Arsenin,
1977) and can be done to the desired accuracy.
Therefore, if the range profile for every aspect angle
can be retrieved correctly, the 2-D image will be
reconstructed satisfactorily. The issue is then how to
reconstruct the range profile for every individual
aspect angle satisfactorily. Since the range profile
reconstruction for a given aspect angle is a 1-D prob-
lem, we will use scalers r and p to represent points
in object domain and Fourier space or p-space, re-
spectively, and by object function we will be referring
one range profile, unless it is otherwise specified as
a2-D or 3-D object function in the following analysis.
The traditional approach to reconstructing a range
profile is to employ the Fourier inversion method.
Fourier inversion of the measured frequency re-
sponse F,(p) yields an estimate of the object func-
tion,

f(r) = f Fy(p)e”dp = " F(p, 8)erdp. (1)

P

Here. the following assumption about the measured
data has been made,

F(p) = {g(P, %)

For the Fourier inversion method, it is assumed
that the frequency response F(p) outside the mea-
surement band [p,, p,] is zero and consequently the
object function f(r) estimated from the finite mea-
surement band will generally be complex. Tne as-
sumption and the result vioiate a priori knowledge
that an object function of finite extent in practicc
has a frequency response of infinite extent and that
the object function to be reconstructed is real. Fail-
ure of Fourier inversion in eqn (1) to satisfy a priori
knowledge can be traced to the ill-posed nature of
the inverse problem (Hadamard. 1923; Tikhonov &
Arsenin, 1977). In practice, the measured {requency
response is contaminated more or less by noise, and
also the measured response F,(p) is only part of the
Founier transform of the object function f(r) to be
reconstructed and Fy(p) is incomplete. Retricval of

for p, = p < p; and fixed 6
otherwise
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f(r) from F,(p) is ill-posed in the sense that small
change in the measured frequency response Fu(p)
can alter radically the estimate f(r) of the object
function as a conscquence of noise contamination
and incompletencss of F,(p). This motivates the
study for a new method to achicve fast and robust
reconstructions satisfying a priori knowledge.

IlI. RECONSTRUCTION BY
NEURAL PROCESSOR

A neural net processor is studied to solve the prob-
lem of object function reconstruction from incom-
plete frequency responses. The neural net processor
models the collective computational behavior of neu-
rons in human brains and is set up to be formed of
massively interconnected “neurons” with parallel
processing capability. The problem to be solved by
the neural net processor is formulated in terms of
desired optima (usually minima). To compute solu-
tions to the optimization problem, the connectivities
(synapses) of the net form an energy space to ap-
propriately represent the optimization problem so
that the net will rapidly converge to its energy min-
ima corresponding to the minima of the problem
when the bias input representing the available in-
formation is fed into the net.

The reconstruction of range profile for an indi-
vidual aspect angle in microwave diversity imaging
is a 1-dimensicnal problem. For a given aspect angle,
since the frequency response of the range profile (or
1-D object function) is known for a finite frequency
band and to reconstruct the original object function
from this kind of knowledge of the frequency re-
sponse is an ill-posed problem, the energy function
for the neural net is set up by the following consid-
erations:

1. The Fourier transform of the reconstructed object
function should agree with the known (measured)
frequency response over the given frequency band
[P, p2] in the “best way™’;

2. the ill-posedness will be remedied by using re-
gularization (Tikhonov & Arsenin, 1977).

Accordingly, the following function is chosen as the
energy function,

H({f) = IF(p) - F(P)I* + aR(f) (2

where, f denotes the object function to be recon-
structed and is a state vector of the net; F (p) the
frequency response from measurement over [ p,. p.};
F(p) the Fourier transform of f, and ||-| a norm
defined on the frequency space ¢ 3 F(p). Itis seen
that the first term in eqn (2) does reflect the fitness
of the reconstruction with the known data in the
frequency domain, that is, the first term vanishes if
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Fy(p) = F(p). The term R(f) in eqn (2) is a re-
gularization operator on f to overcome the ill-posed-
ness of the problem and it is chosen by considerations
of the object function to be reconstructed and a priori
knowledge. Since functions representing physical ob-
jects in microwave diversity imaging are usually con-
tinuous and cannot have abrupt discontinuities, so
Tikhonov's regularization functions (Tikhonov &
Arsenin, 1977) and their similar forms for maintain-
ing smoothness of the reconstruction will be used
and represented by R(f); one of the Tikhonov’s re-
gularization functions used in our study is,

R(F) = f () + [F(Pr. 3)

The constant a in eqn (2} is called the regularization
parameter to control the trade off between fitness
(small a) and smoothness (large o) of reconstruc-
tions.

When the Fourier transform F(p) is expressed in
terms of the object function f, the energy function
fi(f) in eqn (2) will only be a function of the variable
f. since F; is the measured frequency response and
is known. An iterative algorithm for the neural ne:
processor is derived by e luating dH (f)/df(m) to
find the energy change AH due to the change of the
mth sample of f or the change of the state value of
the mth neuron in the processor. To find the minima
of H(f), H(f) is desired to decrease as f changes
and accordingly the update neural net iterative equa-
tion (see appendix for detail derivations) for the
(j + D)th iteration in terms of the jth iteration is
found as,

f(/*l)(m) = f(/)(m)
M
+ A { > 2Re[T, . If(m") + 1. - Sm} 4)
m' =0
where S, is viewed as a regularization related adap-

tive threshold and for the regularization function in
egn (3), 1t is given by,

1 + A, 1
= () g - —
S = 2a {f (m) <Ar + A7 ) Ay

(A7 (m = 1) + Ayf(m + 1)]} (5)

with Ar being the sampling interval in the object
space 53 f and A, and A, given constants. Re[ T, ']
1s the real valued interconnectivity mairix that rep-
resents the underlying Fourier transform and is given
by

TN
Re[T, .| = ~-Rf’[ K,mem']
=1

with NV being the total number of measurement sam-
ples in the frequency domain and K, the Fourier
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kernel. The term 1, in eqn (4) is the external input
related to the measured data and is given by

N
1, = 2Re [E Fd(i)K;,]

=1
and is identified as the real part of the complex range
profile generated by Fourier inversion of the mea-
sured frequency response F; A in eqn (4) is defined
as the “'gain™ of the mth neuron in the net and is
chosen as to satisfy,

1 1 + A,
.t [Tu—a(Ar+ e ~)]>0 (6)

in order to make H(f) decrease as f changes. The
iterative neural net algorithm in eqn (4) has been
digitally tested with realistic data F, for scale models
of aerospace test objects collected in a microwave
imaging facility at the University of Pennsylvania.
One of the models used is a B-52 atrplane. The fre-
quency response data are collected over a frequency
window from 6(GHz) to 17(GHz) and a 90° angular
viewing window which extends from the broadside
to head-on of the airplane. Over the 90° viewing
window, there are totally 128 looks (views) taken
and the range profile for each view is reconstructed
from the measured frequency response data using
the neural net processor expressed by eqn (4); the
2-D object function is finally obtained by the back-
projection algorithm which coherently sums the fil-
tered back-projected value of f for all the views in
the proper angular orientations over a rectangular
image plane grid (Farhat et al., 1983). Shown in Fig-
ure 2(a) is the B-52 airplane model used; Figures
2(b) and 2(c) show the 1-D range-profiles recon-
structed by the FFT algorithm and the neural net
processor, respectively. Shown in Figure 2(b) is the
modulus ot the reconstructed complex range profile
while shown in Figure 2(c) is the intensity of the real
range profile. The 2-D object image reconstructed
by the traditional FFT and filtered back-projection
is shown in Figure 3(a) and that obtained by the
neural net processor followed by filtered back-pro-
jection is shown in Figure 3(b). Since the airplane is
illuminated from only one-side of the fuselage, im-
ages initially reconstructed are brighter on the illu-
minated side of the fuselage and both images shown
in Figures 3(a) and 3(b) are the symmetrically en-
hanced images of the initial reconstructions about
the symmetrical axis of the airplane—the fuselage.
It is worth noting that most man made acrospace
objects possess one or more axis of symmetry and
these are usually determined from object bearing.
Comparing the reconstructions by the two different
methods. the following observations can be made.

e Reconstruction by the neural net processor has
lower back-ground noise level which can be helpful
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RANGE PROFILE RECONSTRUCTED RANGE-PROFILE RECONSTRUCTED

]
9o° BY 7FT BY NEURAL NET PROCESSOR
FUSELAGE FUSELAGE
TANK ENGINES TARK ENGINES
TANK N
ENGINE
(c)

FIGURE 2. (a) B-52 airplane model; (b) reconstruction by FFT; (c) reconstruction by neural net processor.

in practical applications where signal to noise ratio
1s low and leads to improved images.

* Reconstruction by the neural net processor is ob-
tained by assuming that the object function is real
and this makes it easier for opto-electronic imple-
mentations.

IV. OPTO-FLECTRONIC IMPLEMENTATION
OF NEURAL NET PROCESSOR

Optical processing systems offer potential for ultra
fast speed and means for realizing parallel processing
as well as massive interconnections among processing
elements. Therefore. optics can be used for the im-
plementations of neural net models (Farhat. Psaltis.
Prata. & Paek. 1985b) for computing and informa-
tion processing, while the decision making elements
in the implementation can be realized electronically
at present. The architecture for an opto-electronic
implementation ot the neural net iterative algorithm
expressed in eqn (4) is shown in Figure 4. The neural
state vector f in the implementation is represented
by the output of the light emitting diode (LED) ar-
rav. Although LED can only represent positive func-

(a)

tions with its output intensity. the real valued
function f'/'(/m) in microwave diversity imaging can
be handled by using separate LEDs to code positive
and negative values of f'''(m). The interactions
among neurons are provided by broadcasting the
neural states. that is. the outputs of the LEDs.
through the 2-D interconnectivity matrix mask
Re[T, ] and the output (the activation potential) of
each neuron is picked up by the photo-detector (PD)
array. The term [, that represents the measurement
data and the adaptive threshold S, that overcomes
the ill-posedness of the problem can be computed
digitally and injected into the system either elec-
tronically or opticallv as shown. but completely an-
alog schemes for computing these terms are also
possible (an example of analog generation of S, is
given below). The neural “gain™ A(A < 1) can be
realized with an optical or electronic attenuation.
The resultant output from each attenuator would be
used to drive the LED array which will in turn update
the neural state to f''~"(m) for the (; ~ 1)th iter-
ation.

The regularization factor S,, is adaptively gener-
ated in analog fashion according to the neural state

{b)

FIGURE 3. (a) 2-D image reconstructed by FFT; (b) 2-D image reconstructed by neural net processor.
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FIGURE 4. Opto-electronic implementation.

in the net. Shown in Figure § is an optical shuffle
scheme for doing this. The input to this generating
system is the neural state array f*(m) in Figure 4
and the output can be fed into the neural net iterative
processor shown in Figure 4 either electronically or
optically (e.g., through the vertical LED array S,,).
The anamorphic imaging systems, L, and L,, are
used to smear LEA (light emitting array) output rep-
resenting the neural states vertically over the beam

be multiplied with the proper terms through optical
(or electronic) multipliers.

V. HEURISTIC EXTENSION

By examining the neural net iterative algorithm ex-
pressed in eqn (4), the overall activation potential
of the mth neuron in the net can be written as,

splitter cube (BSC). Properly arranged, the tilted Up = 2 Wom'Un' = 8n + AL, O
mirrors TM, and TM, can reflect the light from ”
the BSC to PDALI to form the term [f(m — 1) + where,
f9(m + 1)], while the mirrors M, and M, can reflect _ ,
the light from BSC to PDA2 to form the term f((m). Up = f(m')
The constants (I{Ar) and [A}r + (2/Ar)] shown in Wom' = 8m + 2ARe[T ]
Figure 4 are obtained by setting A, = A, = 1in S,
in eqn (5) for the cases of 0 < m < M and they can Bn = ASm.
L0 o
'A—r[l(m- Netlm ¢ 1)] WA N T ™
M1k = ==
///. T™M2
—~) roAl N\ /// (J
~sm < ', i
\ i V.
PDA2 SR . ]
_7{_9‘“ \ we—T
/' ’, .' Bm
2 [ by ad
(Ar+)tm) [, y LEGEND:
:t L// LEA - LIGHT EMITTING ARRAY FOR

INPUTTING BIPOLAR MULTIVALUED

il
F:‘m) , {O- POSITIVE LED, @- NEGATIVE LED).

Ly. Lz - ANAMORPHIC IMAGING SYSTEM
BSC - BEAM SPLITTER CUBE

M,. Mz - MIRRORS

TM1, TM2 - TILTED MIRRORS

PDAY, PDA2 - PHOTO-DETECTOR ARRAYS

FIGURE 5. Optical shutfle scheme for generating S..
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The mapping equation in conventional neural nets
is.

Um = 8(Un) (8)

and g(u,,) is a sigmoidal function. For the problem
of image reconstruction. multivalued neural states v,,
have to be used to represent the bipolar object func-
tion. In an attempt to make the neural net processor
more neuromorphic. modification must be made to
the conventional neural mapping equation expressed
in egn (8) to preserve the multivalued neural re-
sponses. Heuristically therefore the nonlinear map-
ping will be confined only to the adaptive threshold
8., such that 8,, = g(S:) with $; being a linear com-
bination (window) of the neural state vector U of the
net. The term /,. which represents the known in-
formation. will not go through the nonlinear mapping
in order to preserve the original available informa-
tion. Accordingly. the neural state mapping equation
will be of the following form.

U = > Wty = 8(82) = M. (9)

m

As mentioned earlier. the adaptive threshold
represents the regularization factor in the original
energy function. The introduction of nonlinear adap-
tive threshold g(S:) will extend the set of the regu-
larization functions applicable. The adaptive
threshold S, in eqn (§) can be viewed as a linear
convolution {or a kind of linear mapping) f * X of
the neural states f with a filter X consisting of three
discrete points having values

1
-1 = -AAr. x(0) = Ar = ——.
x(ly = —A;-Ar

respectively. as shown in Figure 6(a) when A, =
A, = 1. This linear mapping can be replaced with a

(a)
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nonlinear mapping of the form ¢ tanh(nS:). where
{ and m are constant parameters. A preliminary im-
age obtained with this nonlinear adaptive threshold
is given in Figure 6(b) which reveals features of the
original object that were not discernible in the pre-
ceding images. For example. the double barreled na-
ture of the engines is now more clearly delineated.

V1. DISCUSSION

The neural net processor can also be used for object
reconstructions when the relationship between the
measurement data and the object function is not nec-
essarilv Fourier transform: in this case. there is no
fast and robust algorithm found so far for reconstruc-
tions. But the neural net processor concept presented
here can be easilv applied just by modifving the op-
tical mask representing the underlyving transform to
achieve fast and robust reconstructions. The term [,,
= 2Re [E\, FA)K},] is actually the real part of the
complex range-profile computed from measured fre-
quency response data by FFT and it can be viewed
as the partial input “seed”™ or “kev™ to the neural
net as the initial estimate of the real range profile of
the object function to be reconstructed. The neural
net processor concept described can be applied to a
wide range of practical problems simply by inputing
the corresponding partial “kev™ as /,, to the neural
net. Nonlinear regularization functions can be intro-
duced in the neural net processor as described and
many nonlinear or linear regularization functions
with high degree of smoothness that is difficult to
realize rapidly by digital computation can be easily
realized opticallv. The regularization parameter o.
which controls the fitness and smoothness of the re-
constructions in our research of microwave image
reconstructions. can also be adaptively changed de-
pendent on the fitness of the reconstruction with the

(b)

FIGURE 6. (a) Linear mapping function: (b) image reconstructed by nonlinear mapping.
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measurement data during the iterative process of the
neural network. Doing imaging adaptively, and in-
corporating attractive information processing fea-
tures of neurons, could make processors of the kind
described here unique and powerful to outperform
many existing processors.
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APPENDIX: TERIVATION OF THE
ITERATIVE EQUATION

This appendix derives the iterative equation for the neural net
processor. The energy function for the neural net processor is
given in eqn (1) and is rewritten here.

H() = [F. — FI? + aR(f). (A.1)

As mentioned in the text, f denotes the object_function to be
reconstructed and F is the Fourier tansform of f; F, is the fre-
quency response from measurement; R(f} is a regularization op-
erator on f and a a regularization parameter. In the derivation
here, we will use the following form as the norm in the frequency
domain,

N
WF. ~ FIF = X |FG) - FOP (A2)
=l
where N is the number of samples in the frequency space and also
the nuniber of frequency mcasurement samples. F (i) and F(i)
are the frequency response samples at the ith frequency point.
For a spatially limited function f(r) and its Fourier transform
F(p). there exists the following relationship.

Fip) = j" f(re #dr (A3)

where the spaually himited function f(r) is assumed as.

_ =0 afrefa b
fir = {: 0 otherwise.
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Usually, F( p)is measured at equally spaced discrete frequency
points in { p,. p:]. that is,

p=p+i-DEZL o2 N (A9
N -1
where [ p,. p:| corresponds to the frequency band fw,, w) used in
the measurement.
Replace eqn (A.3) with a linear algebraic equation for com-
putation purposes,

FG) = F(p) = 2 Kanf(m). (A5)

me=0

The approximation sum of Simpson’s rule for an integral is,

» h
j glx)dx ”‘5[)’0 +y+ Ayt yo+ o+ oy

+ A4y +y oty

where, I is an even number and the function g(x) is evaluated at
point x,, which satisfies the relationship x, = a + kA (h can be
a constant or variable), to give y, = g(x,), for k = 0.1,2,3,
Y AR B A

If Simpson’s sum is used in eqn (A.5), we have,

flm) = fa + m - An) (Ar Sh ") (A.6)

M
K“ = ,B3Are'1p]-~-.iﬂ (A7)

where, the constant B is given according to Simpson'’s rule as,

1 fm=0andm =M
B =<2 ifmisevenand m # M
4 if mis odd

and M is an even integer and (M + 1) is the total number of
samples in the object domain.

If the regularization function in egn (3) in the text is used and
the rectangular rule is used for its numerical evaluation, the energy
function in eqn {A.1) will be of the following form,

H({) = T |F() - FO)|?

1=t

+a i {f‘(m) + -!_(L"___ﬂl.-_l_)]z} Ar

me0 Ar

= X (IF)? = FADF*() - FIOFGE) + FOF ()

‘ i{f’(m)+ Lf(—'"LT{("'—'J]} ar. (AB)

Using eqn (A.5), we will have,

(3 kebom][ 5 kerom |

-~eg - el

N
~

2

1=

i

2 FOF*()

~

S S [z K,K:..] fem)f*(m)

me0 m' =0

1}

=2 3 Tanflm)f(m’). (A9)

me0 m' =0

]

Here, the notation
N
Tam = -0 Ka.KL
R}
has been used and f*(m’) = f(m’), thatis, f(m’) s real, has been

assumed.
Treating the other term accordingly, we will get.

~ M
S FOFI6) + FrOF] = 3 I.f(m)  (A10)

m=0
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with the notation,
‘ ¥
In = 3 |KaFit) + KLF(0)] = 2Re [E Fa(i)l\'}].
ral =

From egn (A.S), 1t is seen that the direct Founer inversion of the
measured frequency response F,(¢) would yield an estimate of the
object function given by (with a scale constant),

ftm) = 3 FAHK2 (A.11)

and /,, would just be the real part of this Fouricr estimate.
Using eqns (A.9) and (A.10), the energy function H(f) can
be rewnitten as,

Hf) = =2 3 Tanf(m)f(m)

= 2 fm) + T RO

E [l
fitm = 1)
Ar

Note that f(m) = 0 for m < 0 or m > M has been assumed.
The first denvative of H(f) with respect to f(m) 1s found as,

2
- — fim)fim - 1) + ] (A.12)
Ar

aH) .
dfimy ~ " &, T Tolfm) = Lo

1+ A,
+ 2a {f(m) (Ar+ o )

- LS = 1 s Afim e 1} A1

where, the constants A, and A; are given as.

A2 [V it0<msM
' 0 fm=20
A = 1 f0=m< M
: 0 ifm=M.
From Tow = -2Z%, K.KZ ,itisseenthat T, = -ZM, X

Ka K& = (Tan)*. 50,
Tuw + T = 2Re[Tun). (A.19)

If the higher order derivatives are ignored, the change AH of the
energy function H(f) due to the change of the mth neuron’s
output f(m) can be wntten as,

= HUIYTY — HUNFY = __dH(?),
AH = H _m HU(f) = fim) Af(m)
2 AHUE) oy g
= 2fm) (fr2"m) - form)] (A.15)

We want 1o find the minima of H(f). so we want H(f) to decrcase

as f(m) changes, that is,
_dHE) iy -
AH = o) (£ "m)

frymy} < 0. (A.16)
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Therefore. we take,

dH(f)

Mum) = ftm) = fomy = x-S
fim) f m) f0m) df(m)

(A1)

Here, the constant A is chosen in such a way as to ensure descent
of the energy of the net to a minimum of #(f) and this will be
discussed later in this appendix.

From eqns (A.13) and (A.14) and using the proper values for
the constants A4, and A,. we will have,

fem) = fm)

M

= A { 2 2Re[T.nfim’y + 1. - s_} (A.18)
m =0

with the term S, being,

Sa = 2a {f"‘(m) (Ar + ! ;:,A:>

- Z‘;[Alf"’(m - 1) + A f{m + 1)]}. (A.19)

Itis scen that eqn (A 18) is the iterative equation for the processor
given in eqn (4) in the text and when 0 < m < M, eqn (A.19) is
cqn (5) in the text.

Now let us determine the conditions that A must satisfy in
order to find the minimum of H(f). When the value of the kth
neuron is changed from f'(k) to f'"(k) + Af(k), the energy
function change can be written as,

H(F) + AR () = H(f + 8..f(m)).
Referring to eqn (A.12). it is found,

(A.20)

ML) = = S [2Re[Toalfm’) + 1k~ S.] Af(K)

m o)

- [r., “a (Ar o ‘;A:)] Af()F.  (A21)

r

Using eqns (A.17) and (A 18) to express A f(k), we will obtain,

AH(D) = - [i +Tu-a (Ar + 3 *r"’)] (AL
(A.22)
Since [Af(k)] is nonnegative, if A satisfies,
£+ [T..-u(m»,'—;—ri‘-’)]>o (A.23)

then., AH,(f) =< 0, that is, H(f) will decrease and find its minima
as f{m) changes.

From eqn (A.7) and the notation T, = -ZY, K.KZ., we
can find,
- ‘ . Ar)?
Too = -2 K.K3 = =3 |Kul¥ = —(BT')N (A.24)

=1 (LR

which is a known constant for the given sample interval Ar in the
object domain and the total number of samples N in the frequency
domain. Thercfore, A can be determined from the known quan-
tities according to eyn (A.23).
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LEARNING NETWORKS FOR EXTRAPOLATION AND
RADAR TARGET IDENTIFICATION

Baocheng Bai and Nabil H. Farhat
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The Moore School of Electrical Engineering
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ABSTRACT: The problem of extrapolation for near-perfect reconstruction and target
identification from partial frequency response data by neural networks is discussed. Because
of ill-posedness, the problem has traditionally been treated with regularization methods.
The relationship between regularization and the role of hidden neurons in layered neural
networks is examined. and a layered nonlinear adaptive neural network for performing
extrapolations and reconstructions with excellent robustness is set up. The results are then
extended to neuromorphic target identification from a single “look™ (single broad-band
radar echo). A novel approach for achieving 100% correct identification in a learning net
with excellent robustness employing realistic experimental data is also given. The findings
reported could potentially obviate the need to form radar images in order to identify targets

and could furnish a viable and economical means for identifying non-cooperative targets.

1 Introduction

For an object function ofr) of finite spatial extent. the corresponding frequency response
F(p) extends over the entire frequency domain —x <p<+x. Because of practical con-
straints, the frequency response F(p) can only be measured over a finite frequency window
p1 < p<p, to give the measured frequency response F,,(p). The traditional and widelv
used approach of Fourier inversion. by means of a discrete Fourier transform (DFT). as an

algorithm for retrieving o(7) from Fn(p) violates a prior: knowledge of the ohject function




and yields an estimate of o(r) with limited resolution, which may not satisfy the resolution
requirements in demanding applications.

More sophisticated methods for retrieving a better estimate of o(r) from F,(p) exist.
The retrieval of o(r) from the partial information F,,(p) in the presence of noise is, however.
known to be an ill-posed problem {1],[2]. Studies have been carried out for retrieving o(r)
by incorporating a prior: knowledge and minimizing a certain “cost function” related to
Fn(p) subject to a given criterion [3]. Mathematically, the function to be minimized can

be put into the following general form:
H(0) = ||Fm — FI* + aR(o) ’ (1)

where F,, is the measured frequency response: F is the Fourier transform of the estimate
function o{r); R(o), called the regularization function, is to ensure that the reconstructed
o{r) has certain smoothness properties: and a. called regularization parameter, adjusts the
degree of fitness expressed in the first term on the right hand side of (1) relative to the
degree of regularization or smoothness expressed in the second term. For example. the
function R(o) in Tikhonov’s regularization method [1] is taken to be a sum of the squared
derivatives of o(r),

Rr(o) = Y [o™(r))? (2)

k

to ensure that o(r) has the required degree of smoothness. Here o) represents the k'*
derivative of the function o(r).

There are limitations. however, to all existing reconstruction algorithms: either an al-
gorithm works well only for a certain class of object functions or the a priori knowledge
requirement is too stringent to be satisfied. The maximum entropy algorithm [4]. which
works well for point-like object functions, can be placed into the former class, while the
Papoulis-Gerchberg's algorithm [5].[6]. which requires knowledge of the exact extent of ob-
jects. can be placed into the latter class. By inspecting equation (1), one appreciates that
reconstructions will be dependent upon the regularization function R{0) chosen and that a
given Rio) will only ensure certain regularization (or smoothing) properties for the object
function of r). This is the reason why different algorithms with different R{o) work well onlv
for a certain set of object functions. For example. the maximum entropy algorithm works
well for point-like object functions and Tikhonov's regularization is good for continuous

object functions. This represents one difficulty in choosing the regularization function R(o)




in setting up the cost function H(o) in (1). Another difficulty is in choosing the regular-
ization parameter a for a given reconstruction problem. For practical reconstructions from
noise contaminated data, the parameter a can be chosen mathematically depending on the
signal-to-noise ratio in the data. This in turn introduces the added problem of having to
estimate the signal-to-noise ratio. which in practice is difficult to do.

Neural net models offer a new dynamic approach to collective nonlinear signal process-
ing that is robust and fault-tolerant and can be extremely fast when parallel processing
techniques are utilized [3],[7]. Neural net models provide a new way of looking at signal
processing problems and can offer novel solutions. A neural net processor for solving image
reconstruction problems through the minimization of an energy function of the type given
in (1) has been studied earlier [3]. Here, a neural net approach to the problem involving
self-organization and learning is investigated. By making use of the neural paradigm albeit
in a highly simplified and loose sense, our nets allow for complex neurons and complex
interconnection weights. in addition to the more biologically plausible real neurons and real
interconnects. An adaptive three-layer neural ret will be used to solve image reconstruction
problems. Learning is carried out in the net to change the interconnections between neurons
in different layers by using the error back-propagation algorithm [8}-[11].

The analogy and relationship between the role played by hidden neurons and that played
by regularization functions in neuromorphic solutions of the image reconstruction problem in
(1) will be discussed. It will be shown that hidden neurons play a certain regularization role,
and that regularization functions in neuromorphic processors can be realized with hidden
neurons. In the approach presented, learning enables the neural net to form automatically
the regularization function R(o) and the regularization parameter a, and to carry out near-
perfect reconstructions adaptively and with excellent robustness.

The near-perfect reconstruction results motivate further study of object recognitions
with label representations. A three-layer nonlinear net will be discussed for practical radar
target identification. A novel approach to achieve perfect (100% correct) identification of
three test targets utilizing realistic data collected in an anechoic chamber using scale models
of actual targets will also be presented. The findings support and demonstrate the viability
of the neuromorphic automated target identification first proposed by Farhat et al.[16] as a

replacement to the tra-itional. but considerably less economical. approach of radar imaging.




2 Problem Formulation

For a spatially limited object function o(r) and its Fourier transform F(p), there exist the

following well-known relationships:

F(p) = /+°°o(r)e‘”"dr (3)
1‘°° + 00 .
or) = 5= [ Fperdp (1)

where the spatially limited o{r) satisfies,

#0 if r € [ry,72] ;

ofr) = _ (3)
=0 otherwise

The spatial frequency variable p has the dimension of inverse length [m~!]. The spatial

frequency band corresponding to the frequency band [w;,w;] used for measurement will

be denoted as [py,p2]. When the frequency response F(p) is measured at equally spaced

discrete frequency points over the measurement band (p;,p;], that is, at the frequency

points,
pr=pi+(k—1)Ap k=12,--- N (6)

where N is the total number of measurements taken and Ap = (p; — p1)/(NV — 1), the
estimate of the object function by the discrete Fourier transform (DFT) algorithm (the

discrete form of (4}) can be expressed as.

o(i)éo(r‘) = :%I’)-ZF(k)e”’“"
ok

Ap
- =P F(k)e? P +(k=1)ap][r1 +(1-1)4r]
- Zk: (ke
i=1.2,---. M (7)

where Ar = (r; ~ r{)/{M = 1) is the object function sampling interval and M the total
number of samples in the object domain. The resolution of the DFT estimation is known to
be proportional to 27 /(p; — p1) and is insufficient for discerning object detail with spacing

finer than 27 /(p2 — p1). Several methods for exceeding this resolution ™+ and achieving
super-resolution have been studied in the past [4]-[6], but these methods suffer from certain
limitations. as noted in the introduction. Reconstructing microwave radar images from data

processed by minimizing an energy function of the form given in (1) through neuromorphic




processing has previously been considered [3]. Results of our continuing work on the re-
lationship between the role of hidden neurons and regularization functions discussed in [3]

are presented in the next two sections.

3 Neuromorphic Image Reconstruction

In this section we present a brief review of radar image reconstruction by neuromorphic
processing [3] in order to lay the foundation for our subsequent discussion of the relation
between the role of hidden neurons in layered nets and regularization functions. The func-
tion to be minimized in microwave radar imaging by neural net processing {3] has the same

form as that in (1),
H(0) = ||Fm - F|i* + aR(0) (8)

All quantities in (8) are the same as defined earlier. The norm defined in the complex space

C is of the following form:

N
| Fm = FII? = > |Fm(i) = F(i)? (9)
1=1

When the Fourier transform F is expressed in terms of the object function o(r), the energy
function H(o) in (8) will only be a function of the variable o(r), since Fin is the known
measured frequency response. After some manipulations and by assuming that the object
function to be reconstructed in microwave radar imaging is real (see [3]), the following state

update equation for the neuromorphic processor can be obtained:

o *(k) = oW (k) + Ao(k) + Al 0<k< M (10
M

Aolk) = A {QZR[Tk,]o“’(i) - Sk} (11)
1=1

where ol?)(k) represents the state of the k** neuron at the j* iteration; X is defined as the
gain of the k** neuron: and Ty, is a quantity which bears information about the transfor-
mation (here the Fourier transform) from the space @30 to the space 23 F. The term /i

represents the available information F,, given by,
N
Iy = 2R [}: qu)!\',',,] (12)
1=1

where A,z = c-e/”™ is the Fourier kernel and c is a constant. Equation (12) is identified as

the real part of the complex object function generated by Fourier inversion of the measured



frequency response F,,. The term Sk in (11) is viewed as a regularization-related adaptive

threshold, given by the following expression:
Sk = 2a[AuxoV (k) + Ag-1109 (k = 1) + Ageqr)o?) (k)] (13)

where Ak, Agk—1), and Ag(ky1) are constants {3}, for a stabilizing (regularizing) function
of the following form in Tikhonov’s regularization method:
M : . 2
3 2 o(x)—o(z—l))
R{o) = 2::1 [o (1) + (—-————Ar Ar (14)

or in its equivalent continuous form:

R(o) = [{o* +[o/(n} ar (15)

The neural net update transformation as expressed in (10) is carried out iteratively until
the global minimum of the energy function of (8) is reached.

Microwave radar images reconstructed using the neural net processor described in (10)
showed improvement over images reconstructed by DFT algorithm, when Tikhonov's stabi-
lizing function (14) or an adaptive threshold linearly related to the neural states as expressed
in (13) was used {3]). In conventional neural nets, binary neurons and nonlinear mapping
of neural states are used [7]; this is largely responsible for the robust and fault tolerant
collective signal processing properties of neural nets. The neural state update equation in
(10) is a linear iterative equation when the threshold of linear mapping of neural states
given in (13) is used: in this case, the advantage exploited in a neural net using (10) to solve
the problem in (8) is only the parallel processing capability of the neural net. No use is
made of nonlinear mapping. For the problem of image reconstruction in (8), multi-valued
(analog) neural states have to be used to represent the bipolar object function. Therefore,
in order to make the neural net processor in (10) more neuromorphic. nonlinear mapping

can be introduced orly via the adaptive threshold S¢. A nonlinear function of the form.
9(S,) = tanh(5,) (16)

similar to the sigmoidal function widely used in conventional neural nets {7}, [8] was in-
troduced heuristically and employed for the adaptive threshold. with 5, being a linear
combination of the neural states [3]. The adaptive threshold Si in (13) is a linear combina-

tion of the three nearest states only and S, in (16) denotes a linear combination of possibly
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many states in general. The neural state update equation in (10) can then be rewritten as,

oU¥(k) = ol(k)+ Ao(k) + M, 0<k<M (17)
M
Ao(k) = A[23 R[Tuilo)(3) - g(S.) (18)

i=1

The neural net processor in (17) v as used to reconstruct one-dimensional functions
(range-profiles) from measured frequency response data Fy, for a sufficiently wide range
of aspect angles of a scaled model of an aerospace test object. A two-dimensional object
function representing a projection image of the test object was formed by coherently sum-
miag the back-projections of the one-dimensional range-profiles based on the projection-slice
theorem (3], [12].

The scale model used in this study is that of a B-52 airplane. Realistic frequency response
data F,, for the object were gathered for a range of aspect angles in an anechoic chamber
microwave scatter measurement facility for two different frequency bands: one extending
from 6 GHz to 17 GHz and the other from 2 GHz to 26.5 GHz. Images reconstructed
from the two frequency bands by DFT inversion and back-projection are shown in Figs.
1(a) and (b), respectively. The image in Fig. 1(b) from the wider frequency band of 2
GHz to 26.5 GHz has a higher resolution than the image in Fig. 1(b) from the narrow
frequency band of 6 GHz to 17 GHz, as would theoretically be expected. It clearly shows
the double-barreled nature of the engines, a detail which is not clearly delineated in the
image in Fig. 1(a). The image reconstructed from frequency response data acquired over
the narrower band (6 GHz to 17 GHz) using the neural net processor expressed in (17) with
the nonlinear threshold mapping function given in (16) is shown in Fig. 1(c); this image
has nearly the same resolution as the image reconstructed over the band from 2 GHz to
26.5 GHz and the double-barreled nature of engine is once again clearly delineated. The
image quality obtained using the neural net processor expressed in (10) with the linear
threshold mapping function is inferior to that in Fig. 1(c), indicating the importance of
incorporating nonlinearity [3]. These results demonstrate the high resolution capability of

norlinear neural nets in image reconstructions.




4 Relationship Between the Role of Hidden Neurons and

Regularization Functions

The neural net processor expressed in (17) is basically of the Hopfield variety {7). It works
iteratively until a stable state of the net is reached to give a solution for the image recon-
struction problem of (8). The iterative process can be implemented by a parallel feedback
loop [3] in which the net’s new state is obtained by the feedback of the state change Ao(k)
computed from the neural state for the preceding iteration (see schematic Fig. 2(a)). The
computation of Ao(k) can be implemented by a subnet with one hidden layer of neurons as
shown in Fig. 2(b). By comparing (17) with Fig. 2(b) it can be noted that the hidden layer
neurons implement the nonlinear adaptive threshold related to the regularization function.
Thus, the weights (or synaptic connections) used for the adaptive threshold can be com-
bined with other weights that directly connect the input layer with the output layer, if the
adaptive threshold is a linear mapping of neural states like that shown in (13). In this case.

the neural net update equation (10) can be rewritten as:

oUtV(k) = o (k) + Ao(k) + Al 0<k<M (19)

M
Ao(k) 22 Y [S?[Tk.] ~ abgpAki — @by Agi ~ 06(k+1):’Aki] ol9)(4) (20)
1=1

where 6, is the Dirac delta function. On the other hand, the total connections imple-
mented from the input layer through the hidden layer to the output layer in Fig. 2(b)
can not be combined with other direct connection weights from the input to the output
layers. This demonstrates the necessity of implementing an adaptive threshold representing
a regularization function in nonlinear neural nets with a hidden neural layer.

The relationship between the role of hidden neurons and regularization functions can
also be appreciated by examining the regularization rol= played by hidden neurons. Hidden
neurons are used to generate internal representations in neural networks and to extend the
computational (or mapping) power of simple two-layer associative networks [8]. In simple
two-layer associative networks. input patterns at the input laver are directly transformed
(or mapped). through the synaptic connections between neurons. into output patterns at
the output laver. No internal representations by hidden neurons are involved in such a
network. Because of this direct mapping property, simple networks will transform input
patterns of similar structure into output patterns of similar structure: consequently, such

network will not be able to vield mapping outputs that are quite different when the iiputs




input pattern | output pattern
00 0
01 1
10 1
11 0

Table 1: XOR Mapping

are quite similar (or vice versa). A classic example of this situation, that has been discussed
by other researchers [8], is the exclusive-or (XOR) problem illustrated in Table 1.

In this example, the inputs (for example, 00 and 11), which are quite different. are to
be mapped into the same output (for example. 0). If two neurons in the input layer are
used to represent the two input bits and one neuron in the output layer is used to represent
one output bit in a simple two-layer network. it is impossible to find a set of weights and
thresholds for all the neurons that would perform the desired mapping [13]. Complications
in applying a simple two-layer net without hidden neurons to the XOR mapping problem
arise in mapping quite different patterns (11 and 00) to identical output (0), as well as
in mapping quite similar patterns (01 and 10) into identical output (1). Such pair of
mappings arc quite contradictory and. by definition. are ill-posed. (For example. in inverse
scattering, the mapping (inverse) is known to be ill-posed if the solution of the mapping or
reconstruction does not exist or is sensitive to noise in the input data.) In the XOR problem
in a two-layer neural net. a network to perform the mapping cannot be found: thus it is an
ill-posed problem since no solution for the problem exists.

On the other hand. a layer of hidden neurons inserted between the input and output
lavers of a simple two-layer network will enable the network to perform arbitrary mapping
from input to output via the hidden neurons, if an adequate number of hidden neurons are
utilized [8], [13]. It can easily be verified that the network with a single hidden neuron shown
in Fig. 3 can perform the XOR mapping mentioned above. This network overcomes the
difficulty encounted in a 2-layer net by using a hidden neuron to change the quite different
input patterns into patterns with sufficient similirity as seen by the output-laver neuron:
it accomplishes the task by using one hidden neuron for a two-bits to one-bit mapping.

The required weights of svnaptic connections among the neurons. indicated in Fig. 3 by




the number on the arrows, are ultimately determined through learning (see, for example,
[8]-{11]). The numbers in the circles represent the required thresholds of the neurons, which
are assumed here to be fixed. All the neuronsin the net are assumed to have only two states:
on (1) or off (0). The hidden neuron has output 1 (on) only when both input neurons have
states 1; otherwise it has output 0 (off). The output neuron will be turned on when it
has a net positive input greater than 0.5; the output neuron will be turned off (net input
smaller than 0.5) by the hidden neuron output through the synaptic connection weight of
—3.0 when both input neurons are on. From the point of view of the output neuron, the
inputs to it are quite similar when the input neurons are on (11) or off (00). Thus, the role
of the regularization or constraint function played by the hidden neuron is to change the
degree of similarity among the input patterns corresponding to the same output pattern.
This role can be considered to be the same as that of regularization functions for ill-posed
problems.

The regularization role playved by hidden neurons can alsu be appreciated from the
error back-propagation (EBP) algorithm, in which hidden neurons are used [8]-[11]. The
EBP algorithm for a general problem is also formulated so as to minimize the error energy

function,
E=ll0- 0| (21)

where O is the specified or the desited output and O is the output of the network for a
given input. For the given input and the specified output. the error signal given by E is
fed-back (or back-propagated) into the network to adjust the interaction weights (weights of
synaptic connections) among all neurons, including hidden neurons. This learning procedure
is iterated until a set of weights is arrived at for which the specified output. or equivalently,
the specified minimum of the energy function. is reached. Comparison of the energy function
in (8) with that in (21) shows there is no regularization operation involved in (21). It is well
known that inversions by minimizing the error energy function of the form shown in (21} in
the presence of noise are ill-posed and that the outputs are usually not stable with respect
to the inputs. From our simulation results obtained by networks with hidden neurons. it
is found that the performance of the networks is quite robust with respect to inputs. This
demonstrates further that the role plaved by the regularization operator in (8) to constrain
the output in ill-posed mapping problems is achieved using the hidden neurons in neural

networks. Impossible mappings in a neural network can be made possible by increasing
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the number of hidden neurons; this can be explained by the fact that regularization is

introduced or further enforced by the increase in number of hidden neurons.

5 Reconstruction by Neural Nets Through Learning

The iterative neural net equation (10) can be cast in a closed form of a non-iterative equation
and implemented with a non-iterative processor when an adaptive threshold (13) that is a
linear function of neural states is used. On the other hand, when an adaptive threshold (16)
that is a non-linear function of neural states is used, the iterative neural net equation (17)
can not be written in the closed form of a non-iterative equation. There is no known method
to directly implement the iterative equation with a non-iterative processor; this results from
the difficulty of choosing a different regularization R(0) and a different parameter a in (8)
for a different reconstruction problem, since the first term on the right hand side of (8)
can be computed with a non-iterative DFT processor. This difficulty can be overcome by a
neural net through learning that enables formation of R(0) and a automatically, depending
on the image to be reconstructed.

Hidden neurons have been shown to have a regularization effect in last section. Hence
a hidden neural laver will be used here for the purpose of regularization. overcoming the
ill-posedness of image reconstruction from partial frequency response. A three-layer neural
net with feedforward connections for image reconstruction is schematically shown in Fig.
4. The input layer takes the frequency responses from measurements, and complex neurons
(i.e., their states are complex and equal to the real and imaginary values of the measured
complex frequency response) in the input layer are connected to neurons in both the output
layer and the hidden layer. The synaptic connection of neurons in the input layer to
neurons in either the output layer or the hidden layer are complex and will be fixed and
taken as the Fourier weights for the image reconstruction problems in situations in which
the measurement data and the image to be reconstructed have a Fourier transform relation.
The number of neurons in all three lavers are assumed to be the same, for the moment. and
to equal the number of frequency points at which the response is measured. Images to be
reconstructed are assumed to be normalized to unity and the output from neurons in the

hidden laver will take a nonlinear function of the form tanh(-). Mathematically. the final




output neural state representing the image to be reconstructed is,

o(i) = z(i)+ tanh [Z r,,z(j)} (22)
J

where r; is real-valued synaptic link between the ith neuron in the output layer and the

jth neuron in the middle (hidden) layer and,
N
) = R [Z W,ka(k)} l=4j (23)
k=1

where R[] represents the real part of the bracketed quantity and Wi, are the Fourier weights.
Once more, a real object function o(:) is assumed for microwave radar imaging [3]; and z(/)
is recognized as the real part of the Fourier inversion of the measured frequency data F,,.

Learning in the neural net involves determining the synaptic weights r;; by an error
back-propagation algorithm [8]-[11]. With an error back-propagation algorithm, the neural
network can be made to learn, under supervision, to perform extrapolations and recon-
structions as follows: for a given desired or ideal object function D, when the measured
frequency response F,,(p) is fed into the network in Fig. 4 and the output from the network

denoted as o, an error function,
1 . .
E=|ID-ol* = 5 ID(i) - o(i) (24)

can be defined. Since knowledge of the desired object function D at the output of the net is
required (D is also the ideal desired image at the output), the learning is supervised. Using
the chain differentiation rule. the change of the error function with respect to the change

of weight r,, can be written as.

OE  OE doli)

dr.,,  do(1) ar, (25)
From equation (24).
JF .
= - ) — 1= =6,
doli) [D(2) ~ oli)} = -4 (26)

and from equation (22).

()00:‘2) tanh’ ‘:Z rx‘,:(j)] 2(7)

J
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o
-1
—

= z(;)/ cosh? {Z r,,:m} (

J

~




Combining now (23), (26) and (27), the following equation is obtained,
OF A .
ol —8:2(j)/ cosh? l:Z T(]‘Z(])il (28)
1 J

To reduce the error signal in (24), the weight r,;; can be changed through gradient descent

by an amount,

JF
= (-55)

n6,2(j)/ cosh?

) To’Z(J')] : (29)
J

with 1 being a constant controlling the learning rate.

The above procedure is for one given object (or pattern) function D. When there are M
ideal images of interest, the procedure is carried out M times, once for each image. For each
image the error signal is checked and if a specified error criterion (to be specified below)
is not satisfied, the procedure is repeated again for every pattern; this is done repeatedly

until the error signal criterion is satisfied for each image.

6 Simulation Results and Robustness Tests

Simulations were carried out to verify the learning concept presented above. Several ideal
object functions of spatial extent within [0.4] cm are used. The number of neurons for
the input, middle. and output layers are assumed to be equal to 21 for each layer. The
small number of neurons used and the small extent ([0,4] cm) of the function occupied
are all chosen for the purpose of containing the computations involved. but they can be
increased or altered at will to any desired value. The frequency response of the object
function chosen is synthesized (computed digitally) in the 6-17 GHz range and subjected
in simulation to the action of the network in Fig. 4. The network can determine a set of
r,, links for a given set of functions to produce correct patterns within the specified error
criterion mlaxlD(z') - o(1)] < 0.097.

For one of our simulations. done for a set of two object functions, the first object function

1.0 r€[0.2.1.2)(cm)
oy(r) = (30)
0 r€[0.0.2)(cm)orr € (1.2.4.0)(cm)
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The second is,

{ 1.0 r € [2.2,3.2)(cm)

(31)
0 rel0,2.2)(cm)or r € (3.2,4.0)(cm)

ox(r) =

These two functions, shown in Figs. 5(a) and (b), respectively, have spatial extents within
0-4 cm. The frequency responses of the two object functions synthesized over the frequency
window 6-17 GHz are shown in Figs. 6(a) and (b), respectively. If the DFT inversion
method is applied to the frequency data in Fig. 6, a low resolution image with most of
its intensity concentrated around the sharp edge of the object functions will be obtained
because of the relatively high frequency window. Fig. 7 shows the reconstruction of the first
object function from the partial frequency domain data in Fig. 6(a) by the DFT method.
This reconstruction shows that there is a relatively broad positive pulse at the position of
the rising edge of the original object function and a broad negative pulse at the position of
the falling edge of the original object function; the two pulses are of different amplitude even
though the given object function has the same rising and falling edges. When the two object
functions are alternately presented to the network in Fig. 4 and the synaptic connections
are changed according to (29), the learning process gradually converges and a set of synaptic
connections is learned by the network, enabling it to provide near-perfect reconstructions
of the object functions within the specified error criterion when the frequency response of
either object function is presented to the network. The network accomplishes the learning
in just five learning cycles, defined as the process of presenting the two patterns to the
network once and modifying the weights following each pattern presentation.

Figure 8 shows the outputs of the network for several typical learning cyvcles and demon-
strates w the network gradually learns the two patterns by adjusting its connection
weights. Shown in Fig. 8(a) are the outputs of the network for the first pattern (left
side) and for the second pattern (right side) after the network has been trained with the
first pattern only during the first learning cycle. It is seen from Fig. 8(a) that the output
from the network for the first pattern as input is near-perfect and the output for the second
pattern as input resembles more the first pattern rather than the second; this is under-
standable, since the network has as vet learned only the first pattern. Completing the first
learning cycle by training the net next with the second pattern. we find the network is able
to give a near-perfect reconstruction of the second pattern as input (right side. Fig. &(b)).
When the first pattern is presented, the output is altered, becoming more like a superposi-

tion of the first pattern and the second pattern. This occurs because. during the learning
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of the second pattern, the network loses some of its previous internal representation of the
first pattern. The internal representation of the first pattern is restored, however, in the
second learning cycle following the presentation of the first pattern again to the net. The
output (left side, Fig. 8(c)) from the network for the first pattern as input again approaches
a near-perfect reconstruction and the output (right side, Fig. 8(c)) for the second pattern
as input is much better than that obtained during the first learning cycle (right side, Fig.
8(a)). This result is also understandable since, so far, the network has been trained with the
first pattern twice (during the first and second learning cycles) and with the second pattern
once only (during the first learning cycle). The output for the second pattern (right side,
Fig. 8(d)) is improved during the second learning cycle after presenting the second pattern
to the network for learning; once again, this degrades the performance of the network in
recognizing the first pattern (left side, Fig. 8(d)). By repeatedly and alternately presenting
the two patterns to the network for learning, the network gradually adjusts its intercon-
nection weights to improve the reconstructions for both patterns. Shown in Figs. 8(e) and
(f) are the outputs of the network during the third learning cycle after the first and second
patterns have been presented to the network, respectively: the performance of the network
is seen to have improved in comparison with the corresponding cases in the second learning
cycle. After the first pattern has been presented to the network for learning during the
fourth learning cycle, the outputs for both patterns are much better (Fig. 8(g)), except for
the presence of some side lobes for the second pattern as input (right side, Fig. 8(g)). The
side lobe level is reduced to the specified tolerable error range of max|D(1) - o(1)| < 0.097
during the fifth learning cycle. Fig. 8(h) shows the outputs of the ne;work for both patterns
after the network has been presented with the first pattern for learning during the fifth or
the final learning cycle.

How to choose the learning rate 7 is critical to the speed of the learning process. The
range of suitable learning rates can be analytically determined for learning algorithms in-
volving a linear function of neural states [14]. For the Jearning algorithm involving a non-
linear function of neural states given in (29), it is, however. hard to analvtically determine
the range of the learning rate. By inspecting (29), it is seen that the learning rate n repre-
sents the proportion by which the synaptic weight changes in accordance with the output
error induced by the current svnaptic weights themselves. In our preceding simulations. the
learning rate chosen is usually n = 0.99. As indicated elsewhere, it would not make sense to

have the learning rate n greater than 1. since this could “overcorrect™ output error {14] — a
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phenomenon that has been observed in our simulations. By “overcorrection™, we mean that
the output error (energy) being minimized exhibits oscillations and sometimes is increased.
Overcorrection usually results in a longer convergence time. On the other hand, making
the learning rate too small could also slow down the learning process. Another cautionary
remark in carrying out the learning process is that the initial synaptic weights should not
be equal; otherwise, the network would obtain identical weights for all synaptic connections
(8]. The initial synaptic weights in our study were chosen randomly.

More complex-shaped object functions were also used to test the learning and recon-
struction capability of the neural net in Fig. 4. A set of two object functions is shown in
Fig. 9. The first function has a spatial extent of 0.2-0.8 cm (Fig. 9(a)) similar to that
shown in Fig. 5(a). The second function is of a more complicated shape. The first part
of this function is a pulse of 0.8 ¢cm in width and the second part is of a triangular shape.
After a set of synaptic weights is learned by the network by presenting the two patterns
to the net five times, the network is able to give a near-perfect reconstruction when the
frequency response of either function is presented to it. The reconstructions of the two
object functions by the network are shown in Fig. 10. Comparing Fig. 10(b) and Fig.
9(b) shows that the reconstruction of the triangular portion of the second object function
is perfect; since the triangular part of the second function resembles more the undulations
of a continuous function, its perfect reconstruction implies the network performs better for
continuous functions.

Generalizations and Robustness: The two simulations presented above have shown
good results when the network is used for reconstructions of object functions that it has
been presented with during the learning process. Generalization, which deals with the per-
formance of a network when inputs are similar to, but not specifically among, the training
sets the net has been presented with during the learning process. is an issue of practical
importance [14]. Generalization for extrapolations and reconstructions from partial fre-
quency information is studied here from the poiut of view of the network’s performance
with noise-contaminated frequency response input data.

Based on the discussion in Section 4. it can be appreciated that hidden neurons plav
a certain regularization role, and that such regularization makes the solution stable for
problems of extrapnlations and reconstructions from partial frequency information. Nu-
merical simulations were conducted to verify that the network with hidden neurons in Fig.

4 provides sufficient regularization and is capable of giving stable and robust reconstruc-
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tions even in the presence of noise. One of these simulations was done with the test object
functions shown in Fig. 5. The frequency responses of the two object functions in Fig. 5

were contaminated with Gaussian noise with the following distribution function,

G(N) = e—N"’/(Zo’)

2ro (32)

where N represents the noise amplitude, and o is the variance of Gaussian noise. Defining
the signal-to-noise ratio (SNR) as,

SNR = average signal energy in the given frequency band

noise variance

1 P2 )
— F 2d 2 3
— / |F(p)(dp/o (33)

we find that when SNR=5, the noise-contaminated frequency responses for the two ob-

ject functions are as shown in Fig. 11 for the frequency band 6-17 GHz corresponding to
p € (2.5.7.1](cm~!). The difference before and after noise contamination can be seen by
comparing Fig. 6 and Fig. 11. Even though the frequency responses in Fig. 11 after noise
contamination differ appreciably from the noise-free frequency responses in Fig. 6, the net-
work, which learned a set of synaptic connections using the noise-free frequency information.
is still able to yield reconstructions of high quality, as shown in Fig. 12. The reconstruc-
tions in Fig. 12 from the noise-contaminated frequency information show a weak side-lobe
structure compared with the reconstructions in Fig. 8(h), where noise-free frequency in-
formation is used as input. When the SNR is further decreased, the side lobe structure
in the reconstructions from noise-contaminated frequency information will increase. The
reconstruction from noisy frequency response data can be improved by training the network
with noise-free, as well as some noise-contaminated frequency data. For studies with the
two test patterns considered here, the network was trained with the noise-free frequency
data shown in Fig. 6. and also with the noisy frequency responses (SNR=1) shown in Fig.
13. The ideal patterns needed in the supervised learning process for the noise-free and noisy
data were specified to be the same as those shown in Fig 5. The noise-free data and the
noisy data were presented alternately to the net to adjust the connection weights until the
specified error criterion rn|ax}D(z') — o(1)] < 0.097 for every pattern was reached. When the
resulting network is tested using noisv frequency response data (SNR=5) as input after the
stated training, the outputs from the network are as shown in Fig. 14. Comparing Fig.
14 with Fig. 12 shows a clear improvement of the side-lobe structure. the result of mixing

instances of noisy and noise-free data sets in training the network. In practice. a network.
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being trained with examples of data from its environment, is expected to encounter differing
levels of SNR. The findings above suggest that this could be beneficial for enhancing the

performance of the net.

7 Radar Target Identification by Layered Networks

The preceding discussion shows that robust extrapolation and near-perfect reconstruction
can be achieved with layered nonlinear networks. An interesting issue is whether there
always exists a network that can do extrapolations and reconstructions for a given finite
number of functions or patterns of interest. A theorem concerning multi~iayer neural net-
works, which simply states that a multi-layer network with sufficient number of hidden
neurons is able to perform any kind of mapping from input to output [8],[15], makes it
possible for the network shown in Fig. 4 to perform extrapolations and reconstructions of
any finite number of functions of interest, if enough hidden neurons are used in the network.
For a finite number of aerospace targets, a two-dimensional object function describing the
geometrical shape of each target can be formed from the one-dimensional functions recon-
structed by a learning net, as described in the last section, through extrapolation of partial
frequency response data acquired for fixed aspects of the targets over a sufficiently wide
range of aspect angles [3]. The two-dimensional image obtained in this fashion can provide
sufficiently high resolution through data acquisitions over a wide range of aspect angles
and extrapolations of the measured frequency response data for every aspect. Such high
resolution images, like those shown in Fig. 1, would enable a human observer to recognize
and identify the target. Another more attractive and less involved concept in target iden-
tification does not involve forming an image. It provides for target identification from an
identifying label of the target generated by a neural net automatically from input informa-
tion (i.e., frequency response data) belonging to that target [16]. This approach is necessary
in situations where aspect information (frequency response echos for various aspects) of the
target can not be obtained over a sufficiently wide range of aspect angles because of prac-
tical limitations and a high-resolution image of the target consequently can not be f>rmed
[16]. The issue then is that of radar target identification from a single frequency response
echo for any practical aspect of the target, or a few such echos, using a lavered nonlinear
network through self-organization and learning.

The traditional approach in nonimaging radar target recognition has been to extract
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from suitably formed radar echos characteristic features or signatures of the targets and
to compare these with a library of such signatures [17]. This kind of approach is basically
a parametric estimation method and makes certain assumptions about the form of the
return signals or echos as expressed by several parameters. The extraction of the assumed
parameters used in the approach is usnally sensitive to noise [18] and there is no adaptation
involved.

The network used for target recognition in our work is shown in Fig. 15. This network
is a variation of the network used in Fig. 4 for extrapolations and reconstructions. In
the network in Fig. 4, which was shown to be robust in extrapolations and reconstruc-
tions from partial information, the number of output neurons was equal to the number of
‘samples representing the function to be reconstructed. In the network shown in Fig. 15,
intended to perform robust target recognition from partial information, the number of out-
put neurons is chosen to allow forming enough distinguishable labels to represent all targets
of interest. Using labels instead of object functions makes learning easier, since the ideal
object functions that are needed to accomplish learning for extrapolations and near-perfect
reconstructions, and that are not easy to obtain for aerospace targets in general, are now
not required. Since label representations rather than object functions of targets are to be
used for identification in this case, no direct connections between output neurons and input
neurons in Fig. 15 are used. this simplifying the structure of the network. As before, the

connections from input neurons to hidden neurons accomplish Fourier mapping, i.e.,

N
2(j) = R(Y_ Wi Fn(k)] (34)

k=1

where W, represents the Fourier weight for inverting the known (measured) partial fre-
quency domain information F,(k). For target recognition from other than frequency do-
main information. the weights W, are set up in accordance with the applicable transform,
or else they are determined through training. The input to an output neuron in Fig. 15 is
given by,

u =y 1) (35)

J

where r,, again represents the weight from neuron j in the hidden layer to neuron i in the

output layer to be determined by learning. The output neuron state is now given by the
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expression,

o(i) = Utanh(w;)] = { : for u; >0 i=12,--- M (36)
0 for u; < 0
where U/[] is the unit step function. The form U[tanh(u;)] is used in (36) to show more
clearly the nonlinear summation input to the output layer, as well as the evolution of the
circuit in Fig. 15 from that of Fig. 4. Different targets are represented by different output
states.

Two groups of test targets were used in our study: the first group contains a 100 : 1
scale model of a B-52 aircraft and a 150 : 1 scale model of a Boeing 747 airplane; the second
group contains a 75 : 1 scale model of a space shuttle in addition to the two scale models in
the first group. Sketches of all three scale models with their actual dimensions are shown
in Fig. 16. It can be noted that the shapes of the Boeing 747 and the space shuttle are
relatively less complex than that of the B-52 airplane. Two output neurons are used to
provide label representations for the three aerospace target models; two output neurons
can usually provide labels for 22 (= 4) distinct patterns. The state (0,0) of the output
neurons in the network shown in Fig. 15 is left idle to indicate the case in which there is
no information input to the network.

For practical applications of radar target identification, it would be necessary to examine
the performance of the network for all possible aspects of the target that could be encoun-
tered by the observer (the radar system}, a process that entails massive data collection and
storage. Because of the limitations of our experimental facility, frequency response data for
the targets are collected for only a limited range of aspect angles extending over a range of
20° in azimuth from a head-on (0°) view of the targets to 20° towards the broad-side view of
the targets. The elevation angle of the target was fixed at 15° relative to the horizontal. The
results obtained with this limited data set are, however, quite telling and representative of
what can be expected with larger libraries of frequency responses covering all target aspects
of interest. Frequency domain data are collected for 100 aspect views equally spaced over
the 20° range for each target, representing a separation of 0.2° between adjacent views.

The network in Fig. 15. designed for target identification, was first presented with
frequency response data from a certain percentage of the 100 aspect views of the targets
to allow learning to take place. Each target is assigned a label: (0.1) for the B-52: (1,0)
for the Boeing 747: and (1.1) for the space shuttle. A total of 101 frequency points were

collected over the band 6 5-17.5 GHz for each aspect view; the number of neurons chosen
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in the input and hidden layers was also 101. Learning is carried out via the error back-
propagation algorithm described in Section 5. which enabled adjusting the connection
weight r;; between the output neuron and the hidden neuron. When the frequency response
of a target for a specific aspect angle is presented to the network, the network iteratively
adjusts the weight r,; by error back-propagation until the desired label for the target is
produced by the network. The training data ({requency response for different aspects or
views) are presented in turn to the network for each target; all targets of interest are learned
by the network ia turn. The process of presenting all the training data for all targets once
constitutes one learning cycle. The maximum number of iterations required for the network
to learn specific targets of the types used in our study was 7 at the start of the learning
process , but this number decreased zs learning progressed or as the number of learning
cvcles increased. Once the network has assimilated and learned the correct representations
for all targets, the learning process is terminated. The maximum number of learning cycles
observed for the network to learn all targets was 8.

Fig. 17 shows the performance of the network for the first group of targets, the B-
52 and the Boeing 747 scale models. The curves in Fig. 17 indicate the probability of
correct recognition by the network of the two targets with respect to the percentage of
the total 100 aspect views collected that were used for training. The training set can be
selected deterministically, i.e., in a given order, or randomly from the set of 100 aspect views
characterizing each target. The criterion for choosing the training set is to make sure that
information about the target is evenly represented. For example, the deterministic selection
case of 50 percent of the available aspect views as the training set can be formed by selecting
every other aspect view, i.e., all the even- (or odd-) numbered views out of the total 100
available aspect views. For the random selection case, the training set can be formed by
selecting aspect views out of the total angular window of 20° with even probability. Our
study shows that the performance of the network is virtually unaffected by the method of
selection for the training set and at most a 1% discrepancy in results for the two methods
of selection is observed. In order to test the performance of the network after it has been
trained. all 100 aspect views are used. While a certain percentage of the test set would have
been used in training the network. the remainder of the test set would not have been seen
by the network before. When 10% of the total available views, or equivalently, when views
with roughly 2° angular separation are used for training, the network achieves only 54%

correct recognition for the B-52 and 72% for the Boeing 747. even though the incremental
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spacing between viewing angle for th:e given set of data is small (0.2°). The performance of
the network improves nonlinearly as the percentage of views used for training is increased.
Because the shape of the Boeing 747 is less complex than that of the B-52, the network is
able to capture its underlying structure in its internal representation ( the r;; weights) much
faster, allowing for better recognition. The network reaches 90% correct recognition, when
the percentage of views used for training increases to 40% for the B-52 and 20% for the
Boeing 747, or when the minimum angular spacing between adjacent views in the training
set is approximately 0.5° for the B-52 and 1° for the Boeing 747. When the percentage of
views used for training for both targets increases to 60%, the network can recognize more
than 98% of the testing aspect views presented to it correctly.

For the network shown in Fig. 15, with the connection weights from the input layer
neurons to the hidden layer neurons fixed as Fourier weights, the input to the hidden layer
can be interpreted as the real part of the Fourier inverse of the measured frequency response
data F,, for one aspect view. This input (range-profile) to the hidden layer bears information
such as the rough extent, shape, fine structure, etc., of the target as seen from that aspect
angle (3]. During training, the network extracts common features or certain correlations
from the training data to form a representation for the target by adjusting its weight r,;.
When the network is tested with test views, the portion of the test views which have
not been presented to the network during training can be considered as noisy versions or
“correlates™ of the training set. This ability of the net to generalize, i.e., to recognize noisy or
correlated data, is an attractive feature of neuromorphic signal processing. The range-profile
data in various aspect views of a complex aerospace target can differ noticeably from one
aspect angle to another. In fact, since the data in various aspect views for complex shaped
aerospace targets change markedly from one aspect angle to another, the resemblance or
correlation of adjacent views for some aspect angles are so weak, even for the angular spacing
of 0.2° used in our data acquisition, that the network fails to recognize the targets perfectly
(with a 100% score) even when almost all the views are used for training; this is evident
in Fig. 17 by the fact that correct recognition for both targets did not reach 100% until
100% of the available aspect view data were used for trairing. The results plotted in Fig.
17 show that the average probability of misrecognition from a single-aspect view when 60%
or more views have been used for training is 1%.

Perfect Recognitions: The probability of misrecognition can be made negligible and

even reduced to zero in two wavs. One way which we describe here is to use more than




one aspect view for a given target in interrogating the network, with the outcome decided
by a majority-decision rule. The multi-aspect views for recognizing aerospace targets in a
practical target identification system could be readily collected and presented to the network
as targets fly by the system. The training procedure for recognition from multi-aspect views
remains the same as that used for recognition from a single-aspect view.

Fig. 18 shows the performance of the same network of Fig. 15 in recognizing the
first group of targets from three, rather than one, aspect views after the network has been
trained with the available training set of aspect views. The three aspect views are randomly
selected from the test set (100 views) and are sequentially fed into the network; the outputs
from the network provide the three labels from which a majority vote on the recognition
outcome can be determined. There were 33 groups of three aspect views randomly formed
from the total 100 aspect views thus ensuring that almost every aspect view'is included
in the test. Fig. 18. which displays the correct recognition percentages with respect to
these 33 groups. shows that the overall performance of the network improves by a factcr
of about 10% when using three views rather than a single view for interrogation. The
correct recognition performance increases much faster as the percentage of the views used
for training increases. The network now reaches 100% correct recognitions when 25% of
the views for the Boeing 747 and 35% of the views for the B-52 are used for training. The
network was also tes*ed with the second group of targets which was formed. as mentioned
earlier, by adding a space shuttle scale model to the first group of targets. The network
was trained similarly using a certain percentage of the total available zspect views from
all three targets. Fig. 19 shows that correct recognition performance of the network for
the space shuttle is similar to that for the Boeing 747. From a practical standpoint. it
makes more sense to evaluate the performance of the net by using multiple aspect views
as test signals combined with a majority vote when the three aspect views are successive
or adjacent to each ocher rather than being distributed over a wide range of aspect angles.
This is representative of situations where the net is probed with three successive frequency
responses collected from a target as the target changes its aspect relative to the measurement
system because of relative motion. In our study, the performance of the network. when the
three aspect views are successive or adjacent to each other. was found to be similar to the
cases shown in Fig. 19 in which the three aspect views are randomly selected. Recognition
using multi-aspect views may be supported by biological vision systems in which multiple

perception fields are formed {19].




The second approach for reducing the misrecognition probability, which we only mention
here, is to use wnultisensory information for both training and interrogation. Polarization-
sensitive sensors can, for example, be used to measure the frequency response of the target
for orthogonal polarization. Data generated in this fashion can be used for both training
and interrogating the network to enhance the probability of correct classification.

Dynamic Range and Noise Considerations: One issue that should be mentioned
with respect to neural networks concerns the dynamic range of input signals to the network.
In applying neural networks to practical problems, it is usual to use binary digital inputs
[7) or normalized inputs {21]. The range of inputs to the network shown in Fig. 15 is not
constrained {i.e., it is neither binarized nor normalized); it is the raw frequency response of
the target measured for a given aspect corrected for range-phase and measurement system
response {3]. The network can be trained and tested with signals of arbitrary amplitude.
No normalization is needed for preprocessing. For example, this network, which was trained
with a set of aspect views with a2 maximum amplitude of 0.5 (arbitrary units) for the B-
52 airplane, would yield the same result when interrogated with test sets ¢f aspect views
of maximum amplitudes of either 1 or 10° (arbitrary units). This practically significant
behavior, which we attribute to the highly nonlinear nature of th~ network (see equations
(35) and (36)), indicates that there is little constraint on the dynamic range of the test
signals applied to the trained net.

A second issue concerns the network’s performance with noisy data. Data in our study,
which were collected in an experimental imaging facility, had a SNR of about 15-20 dB.
The network was also tested with signals having a smaller SNR by adding to the test
data artificial Gaussian noise in accordance with the distribution shown in (32). This
situation was taken to be a crude representation of cases where the test data are collected
under non-ideal situations, such as when vibrations and wind buffeting against an aircraft
produce noisv frequency response measurements. The training data used were still the
original frequency response data collected in our anechoic chamber measurement facility
with no additional noise added. Fig. 19 shows that the network is able to perform 100%
correct recognition of the three test targets when ihe network was trained with 409 of the
available aspect views and tested with the test set of experimental uata without additional
noise added. During the training process. the output was mapr 'd from the input as shown
in {36). When noise was added to the test set to test the .etwork trained with 407 of the

aspect views of experimental data. the performance of the network was as given in Table
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SNR 1 2 3 4 5 6 7 8 9 10
=0 | 74| 78 | 85 | 88 | 91 | 93 | 95 | 97 | 100 | 100
6=0.11|94] 100} 100 | 100 | 109 ; 100 } i00 ; 100 ; 100 | 100

Table 2: Percent correct recognition of Boeing 747 for two different 2lues of the threshold
6.

2 by the row beginning with 8 = 0 for the Boeing 747 plane. The performance of the
network for the other two target models was found to be generally similar and is therefore
not shown. It is seen from Table 2 that the performance of the network deteriorates as SNR
decreases, but the network is still able to furnish 74% correct recognition even with SNR=1
(i.e. SNR=0 dB). The performance of the network in the presence of this severe noise case
can be improved by changing the zero threshold in (36) to a finite threshold during the
training process, and by maintaining the zero threshold during the test or interrogation
stage. In this case, the output neuron state in (36) during the training process was replaced
by,
{ 1 for tanh(u;) > 6 .
(37)
0 for tanh(u;) < -4

where 6 represents the threshold. The output neuron state during the test process is still
given by (36) or by 6 = 0 in (37). The performance of the network in recognizing the
Boeing 747 scale model for 8 = 0.1 in (37) is shown in the last row in Table 2; the network
was trained with 40% of the available aspect views with no additional noise added. The
improvement in performance resulting from the finite threshold can be readily noted: in
the low SNR range an improvement of roughly 20 percentage points is achieved. As the
threshold 6 increases, the performance of the network with respect to noisy data improves.
But in situations where the noise is severe, such as SNR=1, it is hard to achieve perfect
recognitions, since thresholding becomes less effective.

Effect of Spectral Windows: All results presented above are for frequency response
data collected over 6.5-17.5 GHz band for 101 points. A question of practical importance
is whether fewer data points or a narrower spectral window can be used to facilitate the
data acquisition process without sacrificing target identification ability by the trained net.

We used several approaches to assess the effects of spectral bandwidth and the number of
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data points over the band on the performance of the network in identifying the given target
models. One way was to keep the spectral band fixed at 6.5-17.5 GHz and decrease the
number of data points over the band; this is equivalent to changing the sampling interval of
the frequency response data. In so doing, the number of neurons in the input layer, which
represents the number of data points in each measured frequency response, is decreased
along with the number of hidden neurons which is equal to the number of neurons in the
input layer. Another approach was to keep the sampling interval unchanged and to choose
a portion of the 6.5-17.5 GHz band as the new spectral band, which again decreases the
number of neurons in input layer. In this case, the location of the selected spectral band was
found to have little effect on the performance of the network. In all of the above cases, the
following behaviors were observed: (a) When the number of data points and the number of
neurons in the input layer representing the input data points to the net is decreased, either
by changing the sampling interval or by choosing a smaller spectral band, the number of
learning cvcles required by the net increases; this may be explained by the fact that for
every target, the amount of information in the data sets presented to the net during training
is reduced as the number of input data points is decreased; thus, it takes relatively longer
for the net to learn the underlying structure in the data presented to it and to form internal
representations of the targets. (b) When the number of input data points to the net is
too small, the net cannot learn or form the internal represe: _tions. The learning process
does not converge. The minimum number of data points for which the learning process
diverges is 17. the integer closest to 101/6 and the factor by which the sampling interval
of the frequency data over the band 6.3-17.5 GHz was increased. (c) When the number of
input data points to the net is decreased, the performance of the net generally deteriorates:
the average percentage of deterioration is 5%, with no clear pattern of deterioration. For
example. when the frequency band was reduced to 10.5-15.9 GHz, over which there were
50 data points, and 40% of the available 100 aspect views (frequency responses) over this
band were used for training the net, the net’s performance in recognizing Boeing 747 is
94%. This can be compared with the results shown in Fig. 19 in which the net was able
to achieve 100% correct identification of the Boeing 747 when it was trained with 40% of
the available views of 101 data points over the 6.5-17.5 GHz band and tested with aspect
views over this frequency band. The performance of the net with narrow spectral band data
can be improved by increasing the percentage of available aspect views used for training.

Wh n the input frequency data to the first layer of the net consisted of 50 points over the




10.5-15.9 GHz band, and the percentage of the available aspect views used for training the
net was increased to 50%, the performance of the net in identifying the Boeing 747 model
was found to improve to 99%.

The divergence mentioned in the preceding observation (b) occurs when the number
of input data points to the net, and hence the number of input layer neurons (and thus
the number of hidden neurons, which equals the number of neurons in the input layer), is
too small. Theoretical considerations of the mapping power of multi-layer networks [8],{15]
suggest that any mapping can be accomplished through a network of the type shown in Fig.
15 provided that an adequate number of hidden neurons is used (see cautionary arguments
noted in epilogue, [13]). We therefore tested whether the network can converge and learn to
form internal representations of the targets when the number of input data points was small
by increasing the number of hidden neurons in the net. As mentioned earlier, when the
number of input (frequency response data) points over the 6.5-17.5 GHz band to the net is
reduced to 17, the learning process by the net could not converge; in this case, the number
of the hidden neurons was also 17. However, by increasing the number of hidden neurons to
21, the net is able to converge and learn the internal representations for the given aerospace
target models. It should be pointed out that, since the Fourier transform mapping between
the hidden and input layers in the net of Fig. 15 is carried out according to the discrete
summation given in (34), the number of hidden neurons does not have to be equal to the
number of input layver neurons (see also equation (7)); this result supports the theory in
[8].[15]. By increasing the number of hidden neurons further, the number of learning cycles
required by the net to converge during the training process is reduced. Ounce there are
enough hidden neurons and the net is able to converge to learn the internal representations
for the given aerospace target models, no clear improvement in performance is found, in
terms of correctly identifying the given target models when the number of hidden neurons

is increased further [21].

8 Classification, Identification and Cognition

The terms “target identification™ and “target recognition” are frequently used interchange-
ably in the literature, and we have done the same here. Actually there is an important
difference between the two terms. The network we have described in the preceding section

is not cognitive. Once it has learned a set of targets. it can correctly identify which out of




the set is responsible for the sensory signal (e.g., the complex frequency response) presented
at its input by producing a correct identification label at its output. The net is robust, in
that noisy versions of its training set data are also correctly classified by triggering the
correct identification label. This robustness also provides for a generalization capability, in
that the network is able to classify correctly a data set belonging to the learned object that
was not specifically among the training set. This capability to generalize means that the net
does not have to be trained on all data sets needed to represent the object as dictated by
angular sampling considerations (e.g., the scattering pattern of a target of extent L must be
sampled approximately every A/L [radians] when A is the mean wavelength of observation).
Without proper precautions, these robustness and generalization features also mean that
every input presented to the network will produce a response by triggering a label, even
when the input belongs to a novel object, i.e., one that was not learned by the network.
The network is therefore not cognitive in that it has no mechanism for determining whether
a presented signal belongs to a familiar (previously learned) object or to a novel object.
Cognitive capability is essential for proper interpretation and use of a classifier network’s
response, as well as for possible triggering of other useful mechanisms like learning a novel
input and adding it to the repertoire of the net.

There are several ways to impart cognition to a classification network. One is to train
the network on every object it could possibly encounter in its environment in the course of
normal operation. This approach may not, however, be practical, as it could require a major
increase in the size of the network. especially when the number of possible targets is very
large. A second way to impart cognition is to add at the system sensory level detectors that
analyze the received signals to see whether they belong to the class of targets of interest.
Usually, inference rules and decision trees are needed to make such distinctions, and more
than one sensing modality is often indicated (e.g., measurement of altitude, speed. bearing.
size (radar cross section), polarization, etc.). A third way for making a network cognitive

is to incorporate cognitive capabilities in designing the net from the outset [22].

9 Discussion

Extrapolation and reconstruction by neural networks through learning were discussed in
the first part of this paper. This approach provides a novel way for near-perfect extrapo-

lation and reconstruction from partial frequency response information. The approach leads
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by legical extension to the problem of target identification using label representations at
the output layer in place of the exact object functions reconstructed in the extrapolation
problem. The focus in using neural networks for extrapolation and recognition is oa the
structure of networks and on the learning that takes place in them, and not on any partic-
ular computation carried out by a particular neuron. The number of neurons in the hidden
layer of such networks need not be equal to that in the input layer, as in most of the nets
presented here, and can be increased at will. The synaptic connections from the input layer
to both the hidden and the output layers need not be fixed, as was the case in this study, but
can learn to handle any reconstruction problem in which the available data and the object
functions do not necessarily have a Fourier transform relation or when the relation is not
certain or known. In our work, the measured frequency response data and the object func-
tion (the real part of the Fourier inverse of the frequency response, i.e., the real part of the
complex range profile of the target) form a Fourier transform pair. For practical application
of the target identification concept presented in this paper, one envisions that a library of
frequency responses of scale models of targets of interest can be generated by measurements
under controlled conditions in an anechoic chamber radar scattering measurement facility
for all target aspects relevant to practical encounter scenarios between a radar system and
the target. Data generated in this fashion would be “taught” to a layered net by training
as we have described. To use such “trained nets” to identify actual radar targets (that cor-
respond to the scale models used) from data generated by broad-band radar systems in the
field, attention to scaling issues would be given by invoking the principle of electromagnetic
similitude [20}. In this fashion, one hopes to avoid the tedious and costly task of forming
libraries in the field using actual radar systems and cooperative target “fly-bys”.

The number of neurons in the input layer of our learning networks is determined by
the number of available frequency samples. The relation between the number of functions
that can be learned by the network anc the number of neurons in the hidden layver is still
an open question; however, the theoretically established claim for the mapping power of
multi-layer ncuron networks (8], [15] taken together with the findings of this work, provide
strong evidence in support of the use of layered networks for target recognition. Nonlinear
mappings in layered networks enable the formation of the desired reconstruction mapping
region [13] to give robust reconstructions from partial and noisy frequency information. The
application of these concepts to the problem of noncooperative radar target identification

provides convincing evidence of the capabilitv of neuromorphic processing in providing
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results not attainable by traditional signal processing techniques.

ACKNOWLEDGEMENT: This work was supported in part with grants from SDIO/IST
through the Office of Naval Research, the Jet Propulsion Laboratory and the Army Research
Office.

References

[1] A.N. Tikhonov and V.Y. Arsenin, Solutions of ill-posed problems, New York: Wiley,
1977. :

[2] J. Hadamard, Lectures on the Cauchy problem in linear partial differential equations,

Yale University Press, New Haven, 1923.

(3] N.H. Farhat and B. Bai, “Echo inversion and target shape estimation by neuromorphic

processing,” Neural Networks, vol. 2, pp. 117-125. 1989.

[4] T.P. Burg, “Maximum entropy spectral analysis,” presented at the 37th meeting of the

society of Exploration Geophysicists, October 1967.

[5) A. Papoulis, “A new algorithm in spectral analysis and band-limited extrapolation.”
IEEE Trans. on Circuits and Systems, vol. CAS-22, pp. 735-742, Sept. 1975.

[6] R.W. Gerchberg, “Super-resolution through error energy reduction.” Optica Acta. vol.

21, pp. 709-720, 1974,

(7] J.J. Hopfield, “Neural networks and physical systems with emergent collective compu-

tational abilities,” Proc. of Natl. Acad. Sci. USA, vol. 79, pp. 2554-2558, April 1982.

(8] D. Rummelhart, G. Hinton. R. Williams. “Learning internal representations by error

propagatioa,” Parallel Distributed Processing, vol. 1, MIT press, Cambridge, 1088,

[9] P. Werbos, and J. Titus, "Beyond regression: new tolls for prediction and analysis in

the behavioral sciences.” Harvard University dissertation, 1974,

(10] D.B. Parker. “Learning logic.” AMIT Technical Report, TR-47. Center for Computa-

tioual Research in Economics and Management Science.

30




[11] Y. Le Cun, “A learning procedure for an asymmetric threshold network,” Proceedings

of Cognitiva, vol. 85, pp. 599-604, 1985.

(12] N.H. Farhat, et al., “Projection theorems and their application in multi-dimensional
signal processing,” in Advances in Optical Information Processing, G.M. Morris (Ed.),

SPIE, vol. 388, pp. 140-151, 1980.
{13] M. Minsky and S. Papert, Perceptrons, MIT press, Cambridge, 1969.

[14) B. Widrow, et al., “Layered neural nets for pattern recognition,” IEEE Trans. on
ASSP. vol. 36, pp. 1109-1118, July 1988. '

(15] R.P. Lippmann, “An introduction to computing with neural nets,” I[EEE ASSP Mag-
azine, pp. 4-22, April 1987.

[16] N.H. Farhat. “Microwave diversity imaging and automated target identification based
on models of neural networks,” Proc. IEEE vol. 77, pp. 670-681, May 1989. See also:
N.H. Farhat. S. Miyahara, and K.S. Lee, “Optical analogs of two-dimensional neural
networks ard their application in recognition of radar targets,” in Neural networks for
computing, J.S. Denker, Ed. American Institute of Physics, AIP Conf. Proc. 151, New
York, 1988.

[17] C.W. Chuang and D.L. Moffatt, “Natural resonances of radar targets via Prony's
method and target discrimination,” JEEE Trans. Aero. and Electro. Systems, vol. AES-
12, pp. 583-589, Sept. 1976.

(18] M.L. Van Blaricum and R. Mittra, “Problems and solutions associated with Prony's
method for processing transient data,” I[EEE Trans. Anten. Propa. vol. AP-26. pp. 174-
182, Jan. 1974

[19] D. Hubel and T. Wiesel. "Receptive fields. binocular interaction and functional archi-

tecture in the cat’s visual cortex.” J. Physiol vol. 160, pp. 106-154, 1962.
(20} J.D. Stratton. Electromagnetic Theory, McGraw Hill. New York, 1941. pp. 488-490.

{21} R. P. Gorman and T.J. Sejnowski. “Learned classification of sonar targets using a

massively parallel network,” IEEE Trans. ASSP. vol. 36. pp. 1135-1140. July 1958,

31




[22] S. Shinomoto, “A cognitive and associative memory,” Biol. Cybern. vol. 57, pp. 197-

206, 1987.




Figure 1: Microwave images reconstructed by DFT (a) for spectral bandwidth 6-17 GHz

and (b) for spectral bandwidth 2-26.5 GHz; (c) image reconstructed by nonlinear neural
net for the 6-17 GHz spectral bandwidth data.
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Figure 2: (a) Realization of the neural net processor: (b) realization of nonlinear regular-
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Figure 4: A three-layered n-ural net for reconstructions through learning: {a) neuron dis-

tribution and connectivities: {b) equivalent flow chart.
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Figure 6: Frequency responses for the first object (solid line) and the second object (dotted

lined): (a) real part: (b) imaginary part.
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Figure 7: Reconstruction of the first object pattern by DFT: (a) real part; (b) intensity.
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Figure 9: Object patterns with more complex shapes used in simulation; (a) first pattern:

(b) second pattern.
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Boeing 747 (dashed line).
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Appendix

VIII

Optoelectronic Neural Networks and
Learning Machines

Nabil H. Farhat

Foreword

Circuits and Devices Magazine is featuring three sequen-
tial articles on the current status of artificial neural network
implementation technol-
ogy. The current otfering,
on optronic implementa-
tion of artificial neural net-
works, is the second entry
in this trilogy. It is sand-
wiched between the pre-
vious overview on analog
implementation and the
upcoming survey ot digital
artficia) neural networks.

Nabil H. Farhat, who
penned this overview, 1s a
co-author of the 1985 arti-
cle in Optics Letters and i :
follow-up paper in Applied Opncs that broke ground for
modern optical implementation of artificial neural net-
works.

Robert |. Marks [1

Abstract

Optics offers advantages v realizing the parallelism, massive intercon-
nectivaty, and plasticity required m the desion and construction of large-
scale optoclectronic (photonic) neurocomputers that solve optinuzation
probiems at potentially very lugh speeds by learnmy to pertorm mappings
and associations. To elucidate these advaniages, a brict neural net primer
based on phase-space and energy landscape considerations s first pre-
sented. This provides the basis for subsequent discussion of optoelectronic
archutectures and pnplementations with self-orgamzation and learng ability
that are conttgured around an optical crossbar interconnect. Stochastic
learmurg m the context of a Boltzmann machune ts then described to illus-
trate the flexlnlity of optociectromes mr pertormuny tasks that may be
ditficult tor cicctromics alone. Stochastic nets ore studied to gan. msight
mto the possible role ot norse ot inological newral nets. We close by de-
scribmy two approaches to renlizing large-scale opteslectronic neurocom-
puters: mtegrated optoclectronic neural chips with mterchip optical
interconnects that enables thetr clusteriig into large neural networks, and
sets with two-donensiwial rather thau onc-dosenstonal areangement of
newrons and four-dimensional connectivety matrices tor vicreased packimy
density and compatilnlity et Goo-domensional data. We toresee imte-
srated optoclectromcs or photontes plaving an mereasimg role i the con-
struction 0% a nete generation ot versatile prayranmmable analog computers
that perform computations collectively tor wse i newromorphic (bram-
like) processing and fast stmulation and study of complex nonlinear dy-
namical systems.

Introduction

Neural net models and their analogs offer a brain-like
approach to information processing and representation that

32 8755- 3996/89/0900-0032$1.00 © 1989 1EEE

is distributed, nonlinear and iterative. Therefore they are
best described in terms of phase-space behavior where one
can draw upon a rich background of theoretical results de-
veloped in the field of nonlinear dynamical systems. The
uitimate purpose of biological neural nets {BNNs) is to sus-
tain and enhance survivability of the organism thev reside
in, doing so in an imprecise and usually very complex en-
vironment where sensory immpressions are at best sketchy
and difficult to make sense of had thev been treated and
analyzed by conventional means. Embedding artificial neural
nets (ANNs) in man-made systems endows them theretore
with enhanced survivability through fault-tolerance, ro-
bustness and speed. Furthermore, survivability imphes
adaptability through self-orgamzation, knowledge accu-
mulation and learming. It also implies lethality.

All of these are concepts found at plav in a wide range
of disciplines such as economics, social science, and even
military science which can perhaps explain the widespread
interest in neural nets exhibited today from both intellec-
tual and technological viewpoints. [t is widely believed that
artificial neurocomputing and knowledge processing sys-
tems could eventually have signmificant impact on infor-
mation processing, pattern recognition, and control.
However, to realize the potential advantages of neuro-
morphic processing, one must contend with the issue of
how to carry out collective neural computation algorithms
at speeds far beyond those possible with digital computing,.
Obviously parallelism and concurrency are essential ingre-
dients and one must contend with basic implementation
issues of how to achieve such massive connectivity and
parallelism and how to achieve artificial plasticity, 1.e.,
adaptive modification of the strength of interconnections
(synaptic weights) between neurons that is needed for
memory and self-programming (self-organization and
learning). The answers to these questions seem to be com-
ing from two directions of research. One is connection ma-
chines in which a large number of digital central processing
units are interconnected to perform parallel computations
in VLSI hardware; the other is analog hardware where a
large number of simple processing units (neurons) are con-
nected through modifiable weights such that their phase-
space dynamic behavior ha- useful signal processing tunc-
tions associated with it.

Analog optoelectronic hardware implementation of neural
nets (see Farhat et al. in list of further reading), since tirst
introduced in 1985, has been the focus ot attention tor sev-
eral reasons. Primary among these is that the optoelectronic
or photonic approach combines the best of two worlds: the
massive interconnectivity and parallelism of optics and the
flexibility, high gain, and decision making capability (non-
linearity) offered by electronics. Ultimately, it seems more
attractive to form analog neural hardware by completelv
optical means where switching of signais from optical to
electronic carriers and vice versa is avoided. However, in
the absence of suitabie fully optical decision making devices
(e.g., sensitive optical bistability devices), the capabilities
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of the optoelectronic approach remain quite attractive and
could in tact remain competitive with other approaches when
one considers the flexibility of architectures possible with
it.* In this paper we concentrate therefore on the optoelec-
tronic approach and give selected examples of possible ar-
chitectures, methodologies and capabilities aimed at
providing an appreciation of its potential in building a new
generation of programmable analog computers suitable for
the study of non-linear dvnamical systems and the imple-
mentation of mappings, associative memory, learning, and
optimization tunctions at potentally veryv high speed.

We begin with a brief neural net primer that emphasizes
phase-space description, then focus attention on the role
of optoelectronics in achieving massive interconnectivity
and plasticity. Architectures, methodologies, and suitable
technologies for realizing optoelectronic neural nets based
on optical crossbar (matrix vector multiplier) configurations
tor associative memory function are then discussed. Next,
partitioning an optoelectronic analog of a neural net into
distinct lavers with a prescribed interconnectivity pattern
as a prerequisite for self-organization and learning is dis-
cussed. Here the emphasis will be on stochastic learning
by simulated annealing in a Boltzmann machine. Stochastic
learning is of interest because of its relevance to the role of
noise 1n biological neural nets and because it provides an
example of a task that demonstrates the versatility of optics.
We close by describing several approaches to realizing the
large-scale networks that would be required in analog so-
lution of practical problems.

Neural Nets — A Brief Overview

In this section, a brief qualitative description of neural
net properties is given. The emphasis 1s on energy land-
scape and phase-space representations and behavior. The
descriptive approach adopted is judged best as background
for appreciating the matenal in subsequent sections with-
out having to get involved in elaborate mathematical ex-
position. Ail neurai net properties described here are well
known and can easily be found in the literature. The view-
point of relating all neural net properties to energy land-
scape and phase-space behavior 1s also important and useful
in their classtfication.

A neural net of N neurons has (N*-N) interconnections
or (N*-N)/2 symmetric interconnections, assuming that a
neuron does not communicate with itself. The state of a
neuron n the net, i.e.. its firing rate, can be taken to be
binary (0, 1) (on-off, firing or not firing) or smoothly vary-
iny, according to a nonhnear continuous monotonic func-
tion often taken as a sigmoidal function bounded from above

*Iths worth mentioning here that recent results obtained in our
work show that networks of logistic neurons, whose response re-
sembles that of the dervative of a sigmoidal function, exhibit nch
and interesting dynamcs, including spurious state-tree associative
recall, and allow the use of unipolar svnaptic weights. The net-
works can be realized in a large number of neurons when imple-
mented with opncallv addressed reflectior-tvpe liquid crystal spatal
hght modulators. However, the flexibility of such an approach
versus that of the photonic approach 1s vet to be determined.

**From here on 1t will be taken as understood that whenever the
subscnipts (1 or }) appear, they run from | up to N where N is the
number of neurons in the net.
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and below. Thus the state of the i-th neuron in the net can
be described mathematically by

s, = flu})  i=1,23...N" (1)

where f{.} is a sigmoidal function and

N
u =3 Ws -8 +1 (2)

1s the activation potential of the i-th neuron, W, is the
strength or weight ot the synaptic interconnection between
the j-th neuron and the i-th neuron, and W, =0(i.e., neu-
rons do not talk to themselves). 8 and |, are, respectivelv,
the threshold level and external or control input to the 1-th
neuron, thus WS, represents the input to neuron 1 from
neuron j and the tirst term on the right side of (2) represents
the sum of all such inputs to the i-th neuron. For excitatory
interconnections or svnapses, W, is positive, and it is neg-
ative for inhibitory ones. For a binary meural net, that s,
one in which the nurons are binary, i.e., 5[0,1], the smoothlyv
varving function f{.} is replaced by U{.}, where U is the unat
step function. When W is symmetric, i.e., W, =W, one
can define (see |. J. Hoptield's article in list of further read-
ing) a Hamiltonian or energy function E for the net bv

E=-:Yus

to—

] 1
=-3ZZWss -3 20 - s )

The energy is thus determined bv the connectivity matrix
W, the threshold level 8, and the external input [. For
svmmetric W the net 1s stable; that is, for any threshold
level 8, and given "'strobed” (momentarily applied) input
I, the energy of the net will be a decreasing function of the
neurons state s, of the net or a constant. This means that
the net alwavs heads to a steadyv state of local or global
energy mimmmum. The descent to an energy minimum takes
place bv the iterative discrete dvnamical process described
by Eqs. (1) and (2) regardless of whether the state update
ot the neurons 1s synchronous or asynchronous. The min-
imum can be local or global, as the "energy landscape” of
a net (a visuahzation of E for every state s} is not monotonic
but will possess many uneven hills and troughs and is
therefore characterized by many local minima of various
depths and one global (deepest) minimum. The energv
landscape can therefore be modified in accordance with Eq.
(3) by changing the interconnection weights W, and or the
threshold levels 6, and/or the external input |. This ability
to “sculpt” the energy landscape of the net provides tor
almost all the rich and fascinating behavior of neural nets
and for the ongoing etforts of harnessing these properties
to perform sophisticated spatio-temporal mappings, com-
putations, and control functions. Recipes exist that show
how to compute the W, matrix to make the local energy
minima correspond to specific desired states of the net-
work. As the energy minmima are stable states, the net tends
to settle in one of them, depenaing o.. the initializing state,
when strobed by a given input. For example, a binary net
of N =3 neurons wili have a total of 2V = 8 states. These are
listed in Table 1. They represent all possible combinations
s,, s, and s, of the three neurons that describe the state
vector s = [s,,5,,5,] of the net. For a net of N neurons the
state vector 1s N-dimensional. For N = 3 the state vector can
be represented as a point (tip of a position vector) in 3-D
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(of BINARY NEURONS #,0.1) )
"+ 2% STATES LYNG ON VERTICES
OF UNIT CUBE (N = NUMBER OF

(b} MULTIVALUED NEURONS s, € (0.1}
(NEURONS WITH SMOOTH
RESPONSE)

NEURONS) 4 LM STATES LYING WITHIN UNIT CUBE
(L = NUMBER OF DISTINGUISHABLE
* DISCRETE PHASE-SPACE LEVELS IN NEURON R .
ol Abind ESPONSE: N «

NUMBER OF NEURONS)

CONTINUOUS PHASE-SPACE
TRAJECTORY FALLING ANYWHERE
INSIDE UNIT CUBE

Fig. 1 Phase-space ar state space representation and traicctories for a
neural nct ot N'= 3 neurons. (a) tor binary neurons, () tor neurons with
normalized smooth (sigmoidai) response.

space. The eight state vectors histed in Table 1 tall then on
the vertices of a unit cube as llustrated in Fig. 1(a). As the
net changes its state, the tip of the state vector jumps trom
vertex to vertex describing a discrete trajectory as depicted
by the broken trajectory starting trom the tip ot the nitial-
1zing state vector s, and ending at the tip ot the nnal state
vector s,. For any symmetnic connectivity matrix assumed
for the three-neuron net example, each of the eight states
in Table I vields a value ot the energy E. A listing of these
values tor each state represents the energy landscape of the
net.

For a nonbinary neural net whose neurons have nor-
malized sigmoidal response s €[0,1],i.e., 5, varies smoothly
between zero and one, the phase-space trajectory is con-
tinuous and is alwavs contained within the unit cube as
ilustrated in Fig. 1ib). The neural net s governed then by
a set of continuous differential equations rather than the
discrete update relations of Egs. (1) and (2). Thus one can
talk of nets with either discrete or continuous dynamics.
The above phase-space representation 15 extendable to a
neural net of N neurons where one considers discrete tra-
jectories between the vertices of a unit hvpercube in N-
dimensional space or a smooth trajectorv confined within
the unit hvpercube for discrete and continuous reural nets,
respectively.

The stable states of the net, described before as minima
of the energy landscape, correspond to points 1n the phase-
space towards which the state ot the net tends to evolve in

Table I Possible States ot a Binary Newral Net ot 3 New-

rons
s, 3 Sy
0 0 0
0 0 1
0 1 0
1 0 0
0 0 1
1 0 1
1 1 0
1 1 1

time when the net 1s iterated tfrom an arbitrary imitial state.
Such stable points are called “attractors” or “hmit points
of the net, to borrow trom terms used in the descrniption or
nonlinear dvnamical svstems. Attractors in phase-space are
characterized by basins of attraction ot yaven size and shape
Initahizing the net trom a state falling within the basin 1
attraction ot a given attractor and thus regarded as an in-
complete or noi1sy version ot the attractor, leads to a tra-
jectorv that converges to that attractor. This 1s a manv o
one mapping or an associative search operation that icad-
to an associative memory attribute ot neural nets.

Local minima tn an energy landscape or attractors in pnasc-
space can be hxed by torming W in accordance with the
Hebbian learning rule (see both Hebb and Hophield 1 it
of further reading), e, by taking the sum ot the outer
products ot the bipolar verstons of the state vector we wish
to store in the net

N
W = E LR S 4

"
moe ]

_ENERGY
"LANDSCAPE

LOCAL g

MINIMA

~

2}

GLOBAL MINIMUM

e 3
i SRMRVITE?_ a7t 2 A

Fig. 2 Conceptual representation ot energy landscape.

vt = 2™ — ] i=12...N m= 12 ..M 1§

are M bipolar binary N-vectors we wish to store in the net.
Provided that s'™ are uncorrelated and
N
1€nN

< i)

the M stored state s'™ will become attractors in phase-space
of the net or equivalently their associated energies will be
local minima 1n the energy landscape of the net as illus-
trated conceptually in Fig. 2. As M increases bevond the
value given by (6), the memory 1s overloaded, spurious
local mimima are created in addition to the desired ones
and the probability of correct recall from partial or nosy
information deteriorates, compromising operation ot the
net as an associative memory (see R.J. McEliece et al. in
list of further reading).

The net can also be formed in such a wav as to lead to a
hetero-associative storage and recall function by setting the
interconnection weights in accordance with

Vo, = 3 wmgm )
where ¥'™ and g'™ are associated N-vectors. Networks ot
this variety can be used as feedtorward networks only and
this precludes the rich dvnamics encountered in feedback
or recurrent networks from being observed. Nevertheless,
they are useful for simple mapping and representation.

|EEE CIRCUITS AND DEVICES MAGAZINE




e e e ot Nr——

S —————— —————

Energy landscape considerations are useful in devising
tormulas for the storage of sequences of associations or a
cvche sequence of assoctations as would be required tor
conducting sequential or cvchic searches of memories.

Learning 1n biological neural nets 1s thought to occur by
self-organization where the svnaptic weights are moditied
vlectrochemically as a result of environmental (sensory and
other {e.g., contextual)) inputs. All such learning requires
plasticity, the process of gradual svnaptic modification.
Adaptive learming algorithms can be deterministic or sto-
chastic: supervised or unsupervised. An optoeiectronic
iBoltzmann machine) and 1t~ learning pertormance will be
Jdescribed in the section on large scale networks as an -
lustratton of the unique capabilities of optoelectronic hard-
ware.

Neural Nets Classification and Useful
Functions

The energy function and energy landscape description
ot the behavior of neural networks presented in the pre-
ceding sections allows their classification into three groups.
For one group the local minima in the energy landscape
are what counts in the network’s operation. In the second
group the local minima are not utilized and onlv the global
minimu.n 1s meaningful. In the third group the operations
involved do not require energy considerations. They are
merely used for mapping and reduction of dimensionality.
The first group includes Hopfield-type nets for all types of
associative memory applications that include auto-associ-
ative, hetero-associative, sequential and cyclic data storage
and recall. This category also includes all self-organizing
and learning networks regardless of whether the learning
in them 1s supervised, unsupervised, deterministic, or sto-
chastic as the ultimate result of the fact that learning, whether
hard or soft, can be interpreted as shaping the energy land-
scape of the net 5o as to “dig” in it valleys corresponding
to learned states of the network. All nets in this category
are capable ot generalization. An input that was not learned
specitically but is within a prescribed Hamming distance*
to one of the entities learned would elicit, in the absence
of any contradictory information, an output that is close to
the outputs evoked when the learned entity is applied to
the net. Because of the multilayered and partially intercon-
nected nature of self-orgamizing networks, one can define
input and output groups of neurons that can be of unequal
number (See section on large scale networks). This is in
contrast to Hopfield-tvpe nets which are fully intercon-
nected and therefore the number of input and output neu-
rons 15 the same (the same neurons define the iitial and
final states of the net). The ability to define input and cut-
put groups of neurons in multilavered nets enables addi-
tional capabilities that include learning, coding, mapping,
and reduction of dimensionality.

The second group of neural nets includes nets that per-
form calculations that require finding the global energy
minimum of the net. The need for this type of calculation

*The Hammung distance between two binary N-vectors is the
number of elements in which they differ.

**A chaotic attractor 1s manifested by a phase-space trajectory
that is completely unpredictable and 1s highly sensitive to initial
conditions. It could uitimately turn out to plav a role in cognition.
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Fig. 3 Optoelectronic analog circut of a fully interconnected neura: net

often occurs in combinatorial optimization problems and in
the solution of inverse problems encountered, tor example,
in vision, remote sensing, and control.

The third group of neural nets is muitilavered with lo-
calized nonglobal connections similar to those in cellular
automata where each neuron communicates withints laver
with a pattern of neurons in its neighborhood and with a
pattern of neurons in the next adjacent laver. Multilavered
nets with such localized connections can be used tor map-
ping and feature extraction. Neural nets can also be cate-
gorized bv whether they are single lavered or multilavered,
self-organizing or nonself-organizing, solelv feedforward
or involve feedback, stochastic or deterministic. However,
the most general categorization appears to be in terms ot
the wav the energy landscape is utilized, or in terms ot the
kind of attractors tormed and utlized in its phase-space
(limit points, limit cvcles, or chaotic*™).

Implementations

The ea-liest optoelectronic neurocomputer was of the fully
interconnected variety where all neurons could talk to each
other. It made use of incoherent light to avoid interterence
effects and speckle notse and also relax the stringent align-
ment required in coherent light systems. An optical cross-
bar interconnect (see Fig. 3) was employed to carry out the
vector matrix multiplication operation required in the sum-
mation term in Eq. 2. (see Farhat et al. (1985) in hst of
further reading). In this arrangement the state vector of the
net 1s represented by the linear light emitting array (LEA)
or equivalently by a linear array of light modulating ele-
ments of a spatial light modulator (SLM), the connectivity
matrix W, is implemented in a photographic transparency
mask (or a 2-D SLM when a modifiable connectivity mask
1s needed for adaptive learning), and the activation poten-
tial u, is measured with a photodiode array (PDA). Light
from the LEA is smeared vertically onto the W, mask with

35




|
i

INTERCONNEC-
TIVITY MASK

COMPUTER
CONTROLLER

Fig. 4 Boltzmann learning machene. (a) optoctectronic circut duagram
of a net partitioned into tiree lavers by blockmy seqments of the mtercon-
nectivity mask, (b hardware implementation showmy the state vector
LED array at the top right, the MOSLM at the center (hetweent lenses)
and an mtensatied PDA (PDA abutted to an timage nitensitier tiber ontput
window tor added ¢am) i the lower lett. The mtegrated circut boand rack
contains the MOSLM drwver and computer nitertace and the TV recewver
i the background provides the “snow pattern” that is imaged through a
slit anto the intensifier input window for ophical ingection of notse 1 the
network, ’

the aid of an anamorphic lens system (cvlindrical and
spherical lenses in tandem not shown in the figure for sim-
plicity). Light passing through rows of W, is focused onto
the PDA elements by another anamorphic lens system. To
realize bipolar transmission vaiues in incoherent light, pos-
itive elements and negative elements of any row of W, are
assigned to two separate subrows of the mask and light
passing threugh each subrow is focused onto adjacent pairs
of photosites of the PDA whose outputs are subtracted. In
Fig. 3, both the neuron threshold 8, and external input |,
are injected optically with the aid of a pair of LEAs whose
light is focused on the PDA. Note that positive valued I, is
assumed here and therefore its LEA elements are shown
positioned to focus onto positive photosites of the PDA
only.

This architecture was successfully employed in the first
implementation of a 32 neuron net (see Farhat et al. (1985)
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in list of further reading). Fig. 3 also shows a third LEA for
tnjection ot spatio-tempoeral noise into the net as would be
required, tor example, in the implementation ot a noisy
threshold scheme for the Boltzmann fearning machine to
be discussed later. The net of Fig. 3 behaved as an assour-
ative memory very much as expected and was found to
exhibit correct recovery ot three neurons stored from partial
intormation and showed robustness with element tailure
{two ot 1ts 32 neurons were accidentally disabled, 2 PDA
elements broke. and no noticeable degradation in pertorm-
ance was observed).

In the arrangement of Fig. 3, the neurons are tully inter-
connected. To implement learning in a neural net, one needs
to impart structure to the net, i.e., be able to partition the
netinto distinct input, output, and hidden groups or lavers
of neurons with a prescnibed pattern of commumication or
interconnections between them which 1s not possibie in .
tully interconnected or single layer network. A simple but
effective way of partitioning a fully interconnected opto-
electronic net into several layers to form a partially inter-
connected netis shown in Fig. 4(a). This is done simplv by
blocking certain portions of the W, matrix.

In the example shown, the blocked submatrices serve to
prevent neurons trom the input group V, and the output
group V. rrom talking to each other directly. They can o
Lo only via the hidden or butfer group ot neurons H. Fur-
thermore, neurons within H can not talk to each other. This
partiton scheme enables arbitrary division of neurons amony
lavers and can be rapidly set when a programmable non-
volatile SLM under computer control 1s used to implemunt
the connectivity weghts. Neurons in the input and output
groups are called visible neurons because they intertace
with the environment.

The archuitecture of Fig. 4 can be used tn supervised learn-
ing where, beginning from an arbitrary W, , the net is pre-
sented with an input vector from the training set of vectors
it is required to learn through V, and its convergent output
state is observed on V, and compared with the desired
output (association) to produce an error signal which 1y
used in turn according to a prescribed formula to update
the weights matrix. This process of error-driven adaptive
weights modification is repeated a sufficient number of imes
for each vector and alf vectors of the training set until in-
puts evoke the correct desired output or association at the
output. At that time the net can be declared as having
captured the underlying structure of the environment (the
vectors presented to it) by forming an internal represen-
tation of the rules governing the mappings of inputs into
the required output associations.

Many error-driven learning algorithms have been pro-
posed and studied. The most widely used, the error tack-
projection algorithm (see Werbos, Parker, and Rumelhart
et al. in list of further reading), is suited for use in feed
forward multilayered nets that are void of feedback be-
tween the neurons. The architecture of Fig. 4(a) has been
successfully employed in the initial demonstration ot su-
pervised stochastic learning by simulated annealing. Our
interest in stochastic learning stemmed from a desire to
better understand the possible role of noise in BNNs and
to find means for accelerating the simulated annealing
process through the use of optics and optoelectronic hard-
ware. For any input-output association clamped on V, and
V. and beginning from an arbitrary W, that could be ran-
dom, the net is annealed through the hidden neurons by
subjecting them to optically injected noise in the form ot a
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noise component added to the threshold values of the neu-
rons as depicted by 8,, in Fig. 3.

The source of controlled noise used in this implementa-
tion was realized bv imaging a slice of the familiar "snow
pattern’’ displaved on an empty channel of a television
receiver, whose brightness could be vanied under computer
control, onto the PD array of Fig. 4(a). This produces con-
trolled perturbation or shaking” of the energy landscape
of the net which prevents its getting trapped into a state
of local energy minimum during iteration and guarantees
its reaching and staying in the state of the global energy
minimum or one close to it. This requires that the injected
noise intensity be reduced gradually, reaching zero when
the state of global energy minimum is reached to ensure
that the net will stay in that state. Gradual reduction of
noise intensity during this process is equivalent to reducing
the “temperature’” of the net and is analogous to the an-
nealing of a crystal melt to arrive at a good crystalline struc-
ture. It has accordingly been called simulated annealing by
early workers in the field.

Finding the global minimum of a “"cost” or energy func-
tion 1s a basic operation encountered in the solution of op-
timization problems and is found not only in stochastic
learning. Mapping optimization problems into stochastic
nets of this tvpe, combined with fast annealing to find the
state of global “"cost function” minimum, could be a pow-
ertul tool for their solution. The net behaves then as a sto-
chastic dynamical analog computer. In the case considered
here, however, optimization through simulated annealing
is utilized to obtain and list the convergent states at the
end of annealing bursts when the training set of vectors
(the desired associations) are clamped to V, and V,. This
vields a table or listing of convergent state vectors from
which a probability P, of finding the i-th neuron and the -
th neuron on at the same time is computed. This completes
the first phase of learning. The second phase of learning
involves clamping the V, neurons only and annealing the
net through H and V., obtaining thereby another list of
convergent state vectors at the end of annealing bursts and
calculating another probability P°, of finding the i-th and j-
th neurons on at the same time. The connectivity matrix,
implemented in a programmable magneto-optic SLM
(MOSLM), 1s modified then by AW, =¢(P, - P',) computed
by the computer controller where ¢ is a constant controlling
the learning rate. This completes one learning cycle or ep-
isode. The above process is repeated again and again until
the W, stabilizes and captures hopefully the underiving
structure of the training set. Many learning cycles are re-
quired and the learning process can be time-consuming
uniess the annealing process is sufficientlv fast.

We have found that the noisy thresholding scheme leads
the net to anneal and find the global energy minimum or
one close to it in about 35 time constants of the neurons
used. For microsecond neurons this could be 10°-10° times
faster than numerical simulation of stochastic learning by
simulated annealing which requires random selection of
neurons one at a time, switching their states, and accepting
the change of state in such a way that changes leading to
an energy decrease are accepted and those ieading to en-
ergy increases are allowed with a certain controlled prob-
ability.

The computer controller in Fig. 4 performs several func-
tions. It clamps the input/output neurons to the desired
states during the two phases of learning, controls the an-
nealing profile duning annealing bursts, monitors the con-

SEPTEMBER 1989

vergent state vectors of the net, and computes and executes
the weights modification. For reasons related to the ther-
modynamical and statistical mechanical interpretation of ts
operation, the architecture in Fig. 4(a) is called a Boltzmann
learning machine. A pictorial view of an optoelectronic
{photonic) hardware implementation of a tullv operat~na!
Boltzmann learning machine is shown in Fig. 4(b). This
machine was built around a MOSLM as the adaptive weights
mask.

The interconnection matrix update during learning re-
quires small analog modifications AW, in W.. DPixel trans-
mittance 1in the MOSLM is binary, however. Therefore a
scheme for learning with binary weights was developed
and used in which W, is made 1 if (P, -’ )>M regardless
of its preceeding value, where M is a constant, and made
-1 if (P,-P' )< -M regardless of its preceeding value,
and is left unchanged if -M2(P, ~P')sM. This intro-
duces inertia to weights modification and was found to
allow a net of N =24 neuron partitioned into 8-8-8 groups
to learn two autoassociations with 93 percent score (prob-
ability of correct recall) when the value of M was chosen
randomliv between (0-.5) for each learming cvcle. This score
dropped to 70 percent in learning three autoassociations.
However, increasing the number of hidden neurons trom
8 to 16 was found to vield perfect learning {100 percent
score).

Scores were collected after 100 learning cvcles by com-
puting probabilities of correct recall of the training set. Fast
annealing by the noisy thresholding scheme was found to
scale well with size of the net, establishing the viability of
constructing larger optoelectronic learning machines. in the
following section two schemes for realizing large-scale nets
are briefly described. One obvious approach discussed 1s
the clustering of neural modules or chips. This approach
requires that neurons in different modules be able to com-
municate with each other in parallel, if fast simulated an-
nealing bv noisv thresholding is to be carried out. This
requirement appears to limit the number ot neurons per
module to the number of interconnects that can be made
from it to other modules. This is a thornv issue in VLSI
implementation of cascadeable neural chips (see Alspector
and Allen in list of further reading). It provides a strong
argument in favor ot optoelectronic neural modules that
have no such limitation because communication between
modules 1s carned out by optical means and not by wire.

Large Scale Networks

To date most optoelectronic implementations of neural
networks have been prototype units limited to few tens or
hundreds of neurons. Use of neurocomputers in practical
applications involving fast learning or solution of optimi-
zation problems requires larger nets. An important issue,
therefore, is how to construct larger nets with the pro-
grammability and flexibility exhibited by the Boltzmann
learning machine prototype described. In this section we
present two possible approaches to forming large-scale nets
as examples demonstrating the viability of the photonc
approach. One is based on the concept of a clusterable
integrated optoelectronic neural chip or module that can
be optically interconnected to form a larger net, and the
second is an architecture in which 2-D arrangement of neu-
rons 15 utilized, instead of the 1-D arrangement described
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in earher sections, In order to increase packing density and
to provide companbihty with 2-D sensory data formats.

Clusterable Photonic Neural Chips

The concept of a clusterable photonic neural chip, which
is being patented by the University of Pennsvivania, is ar-
rived at by noting that when the connectivity matnx is sym-
metnical, the architectures we described earlier (see Figs. 3
or 4(a)) can be modified to include internal optical feedback
and nonlinear “reflection” (optoelectronic detection, am-
plification, thresholding and hght emission or modulation)
on both sides of the connectivity mask W or nonvolatile
SLM (e.g., a MOSLM) as depicted in Fig. 5 (see Farhat
(1987) in tlist of further reading). The nonlinear reflector
arrays are basically retro-reflecting optoelectronic or pho-
tonic light amplifier arrays that receive and retransmit hght
on the same side facing the MOSLM.

Two further modifications are needed to arrive at the
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concept of clusterable integrated optoelectronics or pho-
tonic neural chips. One 1s replacement ot the LEDs ot the
nonhinear retlector arravs by suitable spatal light moduta-
tors of the fast terroelectnic hquid cryvstal varety tor ex-
ample, and extending the elemerts ot the nonltnear retlector
arrays to torm stripes that extend bevond the dimensions
of the connectivity SLM, and sandwiching the latter be-
tween two such striped nonlinear retlector arravs orented
orthogonaliv to each other as depicted 10 Fig. 500, This
produces a photoruc neural chip that operates 1n an am-
bient hght environment. Analog integrated crcunt (G
technotogy would then be used to tabricate channels o1
nonlinear (thresholding) amplifiers and SLM dnvers, one
channel tor each PD element. The minute IC chip thus
fabrrcated 1s mounted as an integral part on each PDA SLM
assembly of the nonhnear reflector arravs. Individual chan-
nels of the 1C chip are bonded to the PDA and SLM cle-
ments, Two such analog IC chips are needed per neural
chip. The size of the neural chip is determined by the num-
ber of pixels in the SLM used.

An example of four such neural chips connected optoe-
tectronicallv to form a larger net by clustering is shown n
Fie. 3(d). This 1s achieved by simply ahgring the ends ot
the stnpe PD elements in one chip with the ends ot the
stripe SLM elements in the other. ftis clear that the hyvbnd
photonic approach to torming the neural chip would uler-
matelv and preterably be replaced by an entirelv integrated
photonic approach and that neural chips with the slyzhtiv
ditferent torm shown in Fig. 5(e) can be utilized to torm
clusters of more than four. Large-scale neural nets pro-
duced by clustening integrated photontc neural chips have
the advantage of enabling anv partitoming arrangement,
alfowing neurons in the partitioned net to communmicate
with each other in the desired tashion enabling tast an-
nealing bv noisy thresholding to be carned out, and ot
being able to accept both optically injected signals (throush
the PDAs) or electronically injected signals (through the
SLMs) in the nonlinear reflector arravs, facilitating com-
mumcation with the environment. Such nets are theretore
capable of both deterministic or stochastic learning. Com-
puter controlled electronic partitioning and loading and up-
dating ot the connectivity weights in the connectivity SLM
{which can be ot the magneto-optic variety or the nonvol-
atile ferroelectric liquid crystal (FeLCSLM) variety) is as-
sumed. This approach to realizing large-scale fully
programmable neural nets is currently being developed in
our laboratory, and illustrates the potential role integrated
photonics could play in the design and construction ot a
new generation of analog computers intended for use in
neurocomputing and rapid simulation and study of nonlin-
ear dynamical systems.

Neural Nets with Two-Dimensional Deploymer t of
Neurons

Neural net architectures in which neurons are arranged
in a two-dimensional (2-D) format to increase packing den-
sity and to facilitate handhing 2-D formatted data have re-
cejved early attention (see Farhat and Psaltis (1987) in hst
of further reading). These arrangements involve a 2-D N
x N state “vector’” or matrix s, representing the state of
neurons, and a four-dimensional (4-D) connectivity “'ma-
tnx’” or tensor T,,, representing the weights ot synapses
between neurons. A scheme for partitioning the 4-D con-
nectivity tensor into an N x N array ot submatnces, each
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of which has N x N elements, to enable storing it 1n a flat
2-D photomask or SLM for use in optoelectronic imple-
mentation has been developed (see Farhat and Psaltis 1987
in list of further reading). Several arrangements are possi-
ble using this partitioning scheme (see Fig. 6).

In Fig. 6(a), neuron states are represented with a 2-D LED
array (or equivalently with a 2-D SLM). A two-dimensional
lenslet array is used to spatially multiplex and project the
state vector displav onto each of the submatrices of the
partitioned connectivity mask. The product of the state ma-
trix with each of the weights stored in each submatrix is
formed with the help of a spatially integrating square pho-
todetector of suitable size positioned behind each subma-
trix. The (i-))th photodetector output represents the activation
potentials u, of the (1-))th neurons. These activation poten-
tials are nonhinearly amplified and fed back in parallel to
dnve the corresponding elements of the LED state array of
those of the state SLM. In this fashion, weighted intercon-
nections between all neurons are established by means of

SEPTEMBER 1989

the lenslet array instead of the optical crossbar arrangement
used to establish connectivity between neurons when they
are aeploved on a line.

Both plastic molded and glass micro-lenslet arravs can
be fabricated today in 2-D formats. Glass micro-lensiet ar-
ravs with density of 9 to 25 lensletssmm-* can be made 1n
large areas using basically photohthographic techmques.
Resolution ot up to ~30 {p/mm can also be achieved.
Theretore, a micro lenslet array ot (100 x 10Mmm-, tor ex-
ample, contaiming easily 10° lenslets could be used to rorm
a net of 10° neurons provided that the required nonlinear
light amplifiers (photodetector/thresholding amplifier LED
or SLM driver arrav) become available. This is another in-
stance where integrated optoelectronics technology can plav
a central role. We have built a 8 x 8 neuron version ot the
arrangement in Fig. 6(a) emploving a square LED arrav, a
square plastic lenslet arrav, and a square PDA, each ot
which has 8 x B elements in which the state update was
computed serially bv a computer which sampled the acu-
vation potentials provided by the PDA and furnished the
drive signals to the LED array. The connectivity wetghts in
this arrangement were stored in a photographic mask which
was formed with the help of the svstem itself in the tollow-
ing manner: Starting trom a set of unipolar binarv matnces
b, to be stored in the net, the required 4-D connectivity
tensor was obtained by computing the sum of the outer
products of the bipolar binary versions v, =2b, ~ 1. The re-
sulting connectivity tensor was partitioned and umpolar
binary quantized versions of its submatrices were displaved
in order by the computer on the LED displav and stored
at their appropnate locations in a photographic plate placed
in the image plane ot the lenslet array by blocking all ele-
ments of the lenslet arrav except the one where a particular
submatrix was to be stored. This process was automated
with the aid of a computer controlled positioner scanning
a pinhole mask in front of the lenslet arrav so that the
photographic plate 1s exposed to each submatrix of the con-
nectivity tensor displaved sequentially by the computer.
The photographic plate was then developed and positioned
back in place. Although time-consuming, this method ot
loading the connectivity matrix in the net has the advantage
of compensating for all distortions and aberrations ot the
system.

The procedure for loading the memory in the system can
be speeded up considerably by using an array of minute
electronically controlled optical shutters (switches) to re-
place the function of the mechanically scanned pinhole.
The shutter array is placed just in front or behind the lenslet
array such that each element of the lenslet array has a corre-
sponding shutter element in register with it. An electron-
ically addressed ferroelectric liquid crystal spatial lyht
modulator (FeLCSLM) (see Spatial Light Modulators and
Applications in list of further reading) is a suitable cand-
date for this task because of its fast switching speed (a tew
microseconds). Development of FeLCSLMs is being pur-
sued worldwide because of their speed, high contrast, and
bistability which enables nonvolatile switching ot pixel
transmission between two states. These teatures make
FelLCSLMs also attractive for use as programmable con-
nectivity masks in learning networks such as the Boitz-
mann machine in place of the MOSLM presently in use.

Because the connectivity matrix was unipolar, an adap-
tive threshold equal to the mean or energy of the iterated
state vector was found to be required in computing the
update state to make the network function as an associative
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memory that performed in accordance with theoretical pre-
dictions of storage capacity and for successtul associative
search when sketchy (noisv andsor partial) inputs are pre-
sented. Recent evidence in our work is showing that ligistic
neurons, mentioned in a footnote earlier, allow using un-
ipolar connectivity weights in a network without having 10
resort to adaptive thresholding. This behavior mav be caused
by the possibility that logistic neurons, with their “humped”
nonsigmoidal response, combine at once teatures of exci-
tatorv and inhibitory neurons which, from all presently
available evidence, is biologicallv not plausible. Biological
plausibility, it can be argued, 1s desirable tor guiding hard-
ware implementations of neural nets but is not absolutely
necessary as long as departures from 1t facilitate and sim-
plify implementations without sacniticing tunction and flex-
ibility.

Several vanations of the above basic 2-D architecture were
studied. One, shown in Fig. 6(b) emplovs an array of light
integrating elements (lenslet arrav plus diffusers, for ex-
ampie) and a CCD camera pius senal nonlinear amplifica-
tion and dniving to displav the updated state matrix on a
display monitor. In Fig. 6(¢) a microchannel spatial light
moduiator iMCSLM) 1s emploved as an electron-optical ar-
rav ot thresholding amplifiers and to simultaneousiy dis-
play the updated state vector in coherent laser ight as input
to the system. The spatial coherence of the state vector
displav in this case also enables replacing the lenslet arrav
with a fine 2-D grating to spatially muitiplex the displaved
image onto the connectivity photomask. Our studies show
that the 2-D architectures described are well suited for i
plementing large networks with semi-global « - 1ocal rather
than global interconnects between neuroas, with each neu-
ron capable of communicating with L~ to tew thousand
neurons n its vicinity depending on lenslet resoiunur 2uad
geometry. Adaptive learring in these architectures is also
possible provided a suitable erasable storage medium s
found to replace the photosraphic mask. For example in
vet another conceivable variant ot the above architectures,
the lenslet arrav can be used to spatially demultiplex the
connectivity submatrices presented n a suitable Z-D eras-
able displav, 1.e. project them in perfect register, onto da
single SLM device contaiming the state vector data. This
enables torming the activation potential array u, directly
and facilitates carrving out the required neron response
operatons (nonlinear gain) optically and 1n parallef through
appropriate choice ot the state vector SLM and the archi-
tecture. Vananons emploving internal feedback, as in 1-D
neural nets, can also be conceived.

Discussion

Optoelectronics {or photonics) ofters clear advantages tor
the design and construchion of a new generation of analog
computers (neurocomputers) capable of performing com-
putational tasks collectively and dynamically at very high
speed and as such, are susted for use in the solution of
complex problems encountered in cognition, optimization,
and control that have defied efficient handling with trad:-
tional digital computation even when very powertul digital
computers are used. The architectures and proof of concept
prototypes described are aimed at demonstrahng that the
optoelectronic approach can combine the best attnbutes of
optics and electronics together with programmable non-
volatile spatial ight modulators and displays to torm ver-
satile neural nets with important capabilities that include
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assocative storage and recall, self organization and adap-
tive learnming (self-rrogramming), and fast solution ot op-
timization problems. Large-scale versions of these
neurocomputers are needed for tackling real world prob-
lems. Ultimatelv these can be realized using integrated op-
toelectronic (integrated photonic) technology rather than
the hvbrid optoetectronic approach presented here. Thus,
new 1mpetus 15 added for the development of integrated
optoelectronics besides that coming trom the needs of high
speed optical communication. One can expect vaniations ot
integrated optoelectronic repeater chips utilizing GaAs on
silicon technology being developed with optical commu-
nication 1n mund (see J. Shibata and T. Kajiwara 1n hst or
further reading). These, when fabricated in dense arrav
form, will find widespread use in the construction or large-
scale analog neurocomputers. This class of neurocomputers
will probably also find use in the study and fast simulation
of nonlinear dynamical systems and chaos and its role in a
variety of systems. :

Biological neural nets were evolved in nature for one
ulimate purpose: that of maintaining and enhanang sur-
vivability of the organism they reside in. Embedding arti-
ficial neural nets in man-made systems, and in particular
autonomous systems, can serve to enhance their surviva-
bility and therefore reliability. Survivability is also a central
issue in a variety of systems with complex behavior en-
countered in bislogy, economics, social studies, and mili-
tarv science. One can therefure expect neuromorphic
¢ - «ssime ond neurocomputers to play an important role
i e modeling and study of such complex systems es-
pecially it integrated optoelectronic techmques can be made
to extend the flexibility and speed demonstrated in the pro-
totype nets described to large scale networks. One should
also expect that software development tor emulating neural
tunctions on serial and parallel digitai machines will not
continue to be confined, as at present, to the realm of
<traightforward simulation, but spurred by the mounting
interest in neural processing, will move into the aigorithmic
domain where fast efficient alvoriths are likely to be de-
veloped, especally for parallel machines, becoming to neural
processing what the FFT (fast Fourier transtorm) was to the
discrete Fournier transform. Thus we expect that adva.co.
in neuromorphic analog and digital signal processing will
proceed 1n parallel and that applications would draw on
both equally.
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